Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(15): 10790-10798, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38572347

RESUMO

Nanoparticles of strontium hexaferrite, SrFe12O19, were prepared by two different synthesis methods: hydrothermal (autoclave) and sol-gel autocombustion (solid-salt-matrix). The two synthesis pathways yield nanoparticles with different morphologies and correspondingly different magnetic characteristics. The autoclave synthesis results in large plate-like crystallites, which spontaneously align with a preferred crystallographic orientation when applying a uniaxial pressure, but exhibit a relatively poor coercivity. Meanwhile, the solid-salt-matrix synthesis method results in smaller less anisotropic crystallites with enhanced coercivity, but with a relatively limited ability to align under a uniaxial applied pressure. The obtained nanocrystalline powders were dry or wet mixed in different ratios followed by Spark Plasma Sintering (SPS) into dense pellets. A clear correlation between mixing ratio, the level of alignment and resulting coercivity was observed for the dry mixed samples, i.e. as more solid-salt-matrix powder is added, the texture of the pellets decreases and the coercivity increases. The best performing pellet in terms of maximum energy product (BHmax = 32.1(6) kJ m-3) was obtained by dry-mixing of 75 wt% autoclave prepared powder and 25 wt% solid-salt-matrix powder. The results presented here illustrate the potential of mixing magnetic nanoparticle powders with different shape characteristics to gain improved magnetic performance.

2.
Nanoscale ; 12(17): 9481-9494, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347264

RESUMO

Several M-type SrFe12O19 nanoparticle samples with different morphologies have been synthesized by different hydrothermal and sol-gel synthesis methods. Combined Rietveld refinements of neutron and X-ray powder diffraction data with a constrained structural model reveal a clear correlation between crystallite size and long-range magnetic order, which influences the macroscopic magnetic properties of the sample. The tailor-made powder samples were compacted into dense bulk magnets (>90% of the theoretical density) by spark plasma sintering (SPS). Powder diffraction as well as X-ray and neutron pole figure measurements and analyses have been carried out on the compacted specimens in order to characterize the nuclear (structural) and magnetic alignment of the crystallites within the dense magnets. The obtained results, combined with macroscopic magnetic measurements, reveal a direct influence of the nanoparticle morphology on the self-induced texture, crystallite growth during compaction and macroscopic magnetic performance. An increasing diameter-to-thickness aspect ratio of the platelet-like nanoparticles leads to increasing degree of crystallite alignment achieved by SPS. Consequently, magnetically aligned, highly dense magnets with excellent magnetic performance (30(3) kJ m-3) are obtained solely by nanostructuring means, without application of an external magnetic field before or during compaction. The demonstrated control over nanoparticle morphology and, in turn, crystal and magnetic texture is a key step on the way to designing nanostructured hexaferrite magnets with optimized performance.

3.
RSC Adv ; 9(23): 12968-12976, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35520765

RESUMO

The magnetic properties of SrFe12O19 nanocrystallites produced by hydrothermal synthesis and consolidated by Spark Plasma Sintering (SPS) were optimized by varying the compaction parameters: sintering time, sintering temperature, uniaxial pressure or pre-compaction in a magnetic field. Highly textured compacts with a high degree of crystallite alignment were produced. Qualitative and quantitative textural information was obtained based on X-ray diffraction pole figure measurements. The optimum sintering conditions, relating the degree of alignment and bulk magnetic properties, were identified based on the resulting magnetic properties. It was found that one must strike a balance between the degree of crystallite alignment for high saturation magnetisation and coercivity (H c) to gain the highest energy product (BHmax). It was found that the coercive field drops when the crystallite alignment increases. This was particularly pronounced in the case of magnetically pre-aligned powders prior to SPS, where H c and BHmax decreased as the pellets became increasingly textured. The best BHmax value of 29(4) kJ m-3 was found for the sample sintered at 950 °C for 2 minutes with an applied pressure of 100 MPa for a powder pre-aligned in an applied field of 0.55 T. The results presented here show the potential of SPS consolidation of SrFe12O19 with high relative densities and emphasize the effect of the degree of alignment on the decrease of coercive field and its influence on the magnetic performance.

4.
Sci Rep ; 8(1): 7325, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743636

RESUMO

Nanocrystallites of the permanent magnetic material SrFe12O19 were synthesised using a conventional sol-gel (CSG) and a modified sol-gel (MSG) synthesis route. In the MSG synthesis, crystallite growth takes place in a solid NaCl matrix, resulting in freestanding nanocrystallites, as opposed to the CSG synthesis, where the produced nanocrystals are strongly intergrown. The resulting nanocrystallites from both methods exhibit similar intrinsic magnetic properties, but significantly different morphology and degree of aggregation. The nanocrystallites were compacted into dense pellets using a Spark Plasma Sintering (SPS) press, this allows investigating the influence of crystallite morphology and the alignment of the nanocrystallites on the magnetic performance. A remarkable correlation was observed between the crystallites morphology and their ability to align in the compaction process. Consequently, a significant enhancement of the maximum energy product was obtained after SPS for the MSG prepared sample (22.0 kJ/m3), compared to CSG sample, which achieved an energy product of 11.6 kJ/m3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...