Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 273, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448476

RESUMO

Coastal elevation data are essential for a wide variety of applications, such as coastal management, flood modelling, and adaptation planning. Low-lying coastal areas (found below 10 m +Mean Sea Level (MSL)) are at risk of future extreme water levels, subsidence and changing extreme weather patterns. However, current freely available elevation datasets are not sufficiently accurate to model these risks. We present DeltaDTM, a global coastal Digital Terrain Model (DTM) available in the public domain, with a horizontal spatial resolution of 1 arcsecond (∼30 m) and a vertical mean absolute error (MAE) of 0.45 m overall. DeltaDTM corrects CopernicusDEM with spaceborne lidar from the ICESat-2 and GEDI missions. Specifically, we correct the elevation bias in CopernicusDEM, apply filters to remove non-terrain cells, and fill the gaps using interpolation. Notably, our classification approach produces more accurate results than regression methods recently used by others to correct DEMs, that achieve an overall MAE of 0.72 m at best. We conclude that DeltaDTM will be a valuable resource for coastal flood impact modelling and other applications.

2.
Nat Commun ; 12(1): 6533, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764288

RESUMO

Exposure to coastal flooding is increasing due to growing population and economic activity. These developments go hand-in-hand with a loss and deterioration of ecosystems. Ironically, these ecosystems can play a buffering role in reducing flood hazard. The ability of ecosystems to contribute to reducing coastal flooding has been emphasized in multiple studies. However, the role of ecosystems in hybrid coastal protection (i.e. a combination of ecosystems and levees) has been poorly quantified at a global scale. Here, we evaluate the use of coastal vegetation, mangroves, and marshes fronting levees to reduce global coastal protection costs, by accounting for wave-vegetation interaction.The research is carried out by combining earth observation data and hydrodynamic modelling. We show that incooperating vegetation in hybrid coastal protection results in more sustainable and financially attractive coastal protection strategies. If vegetated foreshore levee systems were established along populated coastlines susceptible to flooding, the required levee crest height could be considerably reduced. This would result in a reduction of 320 (range: 107-961) billion USD2005 Power Purchasing Parity (PPP) in investments, of which 67.5 (range: 22.5- 202) billion USD2005 PPP in urban areas for a 1 in 100-year flood protection level.

3.
Philos Trans A Math Phys Eng Sci ; 376(2121)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29712799

RESUMO

Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...