Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 494: 113055, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857474

RESUMO

To develop a suitable and effective vaccine against Staphylococcus aureus (S. aureus), we selected the Hla-MntC-SACOL0723 (HMS) recombinant protein with two different formulations of alum and Monophosphoryl lipid A (MPL) adjuvants. In this study, we aimed to evaluate the potentials of alum and MPL adjuvants in stimulating the immune response of HMS vaccine candidate against S. aureus. To evaluate the type of induced immune response, anti-HMS total IgG, IgG1, IgG2a, and IFN-γ, IL-2, IL-4, and IL-17 cytokines were determined after vaccination of mice with HMS-alum, HMS-MPL candidates. Mice were challenged with Methicillin-resistant Staphylococcus aureus (MRSA) was isolated from pressure sores and evaluated for bacterial load in the kidney homogenates and survival rate. It was observed that total IgG and isotypes (IgG1 and IgG2a), IL-4, and IL-17 were significantly increased in the group that received HMS-alum vaccine compared with the group that received HMS-MPL formulation. On the other hand, the levels of IFN-γ and IL-2 cytokines in the group that received HMS-MPL were higher than the group that received HMS-alum formulation. Bacterial load in the mice who received HMS protein formulated with alum adjuvant was reduced more than the mice who received HMS protein formulated with MPL adjuvant. Histopathological analysis showed more pathological changes in kidney tissues of the group received of HMS-MPL compared with the HMS-alum formulation. The survival rate was equal in both groups of immunized with HMS-alum and HMS-MPL formulations. Finally, it could be concluded that both adjuvants of alum and MPL are suitable immune response enhancers to HMS vaccine candidate.


Assuntos
Rim/patologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Proteínas Periplásmicas de Ligação/genética , Sepse/imunologia , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Compostos de Alúmen , Animais , Feminino , Antígenos HLA/genética , Imunoglobulina G/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Lipídeo A/análogos & derivados , Lipídeo A/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética , Sepse/prevenção & controle , Regulação para Cima
2.
J Biomol Struct Dyn ; 39(8): 2857-2872, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32295479

RESUMO

At present, novel Coronavirus (2019-nCoV, the causative agent of COVID-19) has caused worldwide social and economic disruption. The disturbing statistics of this infection promoted us to develop an effective vaccine candidate against the COVID-19. In this study, bioinformatics approaches were employed to design and introduce a novel multi-epitope vaccine against 2019-nCoV that can potentially trigger both CD4+ and CD8+ T-cell immune responses and investigated its biological activities by computational tools. Three known antigenic proteins (Nucleocapsid, ORF3a, and Membrane protein, hereafter called NOM) from the virus were selected and analyzed for prediction of the potential immunogenic B and T-cell epitopes and then validated using bioinformatics tools. Based on in silico analysis, we have constructed a multi-epitope vaccine candidate (NOM) with five rich-epitopes domain including highly scored T and B-cell epitopes. After predicting and evaluating of the third structure of the protein candidate, the best 3 D predicted model was applied for docking studies with Toll-like receptor 4 (TLR4) and HLA-A*11:01. In the next step, molecular dynamics (MD) simulation was used to evaluate the stability of the designed fusion protein with TLR4 and HLA-A*11:01 receptors. MD studies demonstrated that the NOM-TLR4 and NOM-HLA-A*11:01 docked models were stable during simulation time. In silico evaluation showed that the designed chimeric protein could simultaneously elicit humoral and cell-mediated immune responses. Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Vacinologia , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T/genética , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Vacinas de Subunidades Antigênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...