Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6688): 1228-1235, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330140

RESUMO

Many examples of exposed giant dike swarms can be found where lateral magma flow has exceeded hundreds of kilometers. We show that massive magma flow into dikes can be established with only modest overpressure in a magma body if a large enough pathway opens at its boundary and gradual buildup of high tensile stress has occurred along the dike pathway prior to the onset of diking. This explains rapid initial magma flow rates, modeled up to about 7400 cubic meters per second into a dike ~15-kilometers long, which propagated under the town of Grindavík, Southwest Iceland, in November 2023. Such high flow rates provide insight into the formation of major dikes and imply a serious hazard potential for high-flow rate intrusions that propagate to the surface and transition into eruptions.

2.
Nature ; 609(7927): 523-528, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104559

RESUMO

Increased rates of deformation and seismicity are well-established precursors to volcanic eruptions, and their interpretation forms the basis for eruption warnings worldwide. Rates of ground displacement and the number of earthquakes escalate before many eruptions1-3, as magma forces its way towards the surface. However, the pre-eruptive patterns of deformation and seismicity vary widely. Here we show how an eruption beginning on 19 March 2021 at Fagradalsfjall, Iceland, was preceded by a period of tectonic stress release ending with a decline in deformation and seismicity over several days preceding the eruption onset. High rates of deformation and seismicity occurred from 24 February to mid-March in relation to gradual emplacement of an approximately 9-km-long magma-filled dyke, between the surface and 8 km depth (volume approximately 34 × 106 m3), as well as the triggering of strike-slip earthquakes up to magnitude MW 5.64. As stored tectonic stress was systematically released, there was less lateral migration of magma and a reduction in both the deformation rates and seismicity. Weaker crust near the surface may also have contributed to reduced seismicity, as the depth of active magma emplacement progressively shallowed. This demonstrates that the interaction between volcanoes and tectonic stress as well as crustal layering need to be fully considered when forecasting eruptions.

3.
Nat Commun ; 11(1): 2403, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415105

RESUMO

Large volume effusive eruptions with relatively minor observed precursory signals are at odds with widely used models to interpret volcano deformation. Here we propose a new modelling framework that resolves this discrepancy by accounting for magma buoyancy, viscoelastic crustal properties, and sustained magma channels. At low magma accumulation rates, the stability of deep magma bodies is governed by the magma-host rock density contrast and the magma body thickness. During eruptions, inelastic processes including magma mush erosion and thermal effects, can form a sustained channel that supports magma flow, driven by the pressure difference between the magma body and surface vents. At failure onset, it may be difficult to forecast the final eruption volume; pressure in a magma body may drop well below the lithostatic load, create under-pressure and initiate a caldera collapse, despite only modest precursors.

4.
Science ; 353(6296): aaf8988, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418515

RESUMO

Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption.

5.
Nature ; 517(7533): 191-5, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25517098

RESUMO

Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

6.
Nature ; 468(7322): 426-30, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21085177

RESUMO

Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.

7.
Lakartidningen ; 101(38): 2880-2, 2004 Sep 16.
Artigo em Sueco | MEDLINE | ID: mdl-15485171

RESUMO

Systemic capillary leak syndrome (SCLS) is an unusual condition characterized by periodic leakage of plasma proteins through the capillary wall, leading to hypoalbuminaemia, hypovolaemia, haemoconcentration and shock. The pathogenesis is unknown and the mortality high. Various prophylactic treatments have been tried but are difficult to evaluate because of the unpredictable course of the disease. We describe one patient with frequent attacks of SCLS, that did not respond to any kind of treatment regimens over a period of nine years. Subsequently, therapy with regular immunoadsorption of plasma proteins and a leukotriene receptor antagonist was attempted. This treatment has now been given for six years and only one episode of capillary leakage has occurred. The effect may be due to removal of pathogenic immunoglobulins or immune complexes and/or inhibition of leukotriene-induced capillary leakage.


Assuntos
Síndrome de Vazamento Capilar/terapia , Acetatos/uso terapêutico , Adulto , Proteínas Sanguíneas , Síndrome de Vazamento Capilar/tratamento farmacológico , Síndrome de Vazamento Capilar/imunologia , Ciclopropanos , Feminino , Humanos , Técnicas de Imunoadsorção , Antagonistas de Leucotrienos/uso terapêutico , Quinolinas/uso terapêutico , Sulfetos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...