Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 34(12): 1-16, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22167584

RESUMO

We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength ε and the globule size N (G) is observed. We find two distinct dynamical regimes: a liquid-like regime (for ε < ε(s) with fast internal dynamics and a solid-like regime (for ε > ε(s) with slow internal dynamics. The cohesion strength ε(s) of this freezing transition depends on N (G) . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with ε and scales extensive in N (G) . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.


Assuntos
Biopolímeros/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Fricção , Conformação Molecular , Estresse Mecânico
2.
Eur Phys J E Soft Matter ; 34(6): 55, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21626368

RESUMO

Loops are essential secondary structure elements in folded DNA and RNA molecules and proliferate close to the melting transition. Using a theory for nucleic acid secondary structures that accounts for the logarithmic entropy -c ln m for a loop of length m, we study homopolymeric single-stranded nucleic acid chains under external force and varying temperature. In the thermodynamic limit of a long strand, the chain displays a phase transition between a low-temperature/low-force compact (folded) structure and a high-temperature/high-force molten (unfolded) structure. The influence of c on phase diagrams, critical exponents, melting, and force extension curves is derived analytically. For vanishing pulling force, only for the limited range of loop exponents 2 < c ≲ 2.479 a melting transition is possible; for c ≤ 2 the chain is always in the folded phase and for 2.479 ≲ c always in the unfolded phase. A force-induced melting transition with singular behavior is possible for all loop exponents c < 2.479 and can be observed experimentally by single-molecule force spectroscopy. These findings have implications for the hybridization or denaturation of double-stranded nucleic acids. The Poland-Scheraga model for nucleic acid duplex melting does not allow base pairing between nucleotides on the same strand in denatured regions of the double strand. If the sequence allows these intra-strand base pairs, we show that for a realistic loop exponent c ≈ 2.1 pronounced secondary structures appear inside the single strands. This leads to a lower melting temperature of the duplex than predicted by the Poland-Scheraga model. Further, these secondary structures renormalize the effective loop exponent [Formula: see text], which characterizes the weight of a denatured region of the double strand, and thus affect universal aspects of the duplex melting transition.


Assuntos
DNA de Cadeia Simples/química , DNA/química , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/química , Pareamento de Bases , Entropia , Conformação Molecular , Estrutura Molecular , Hibridização de Ácido Nucleico , Transição de Fase , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...