Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 13344, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527711

RESUMO

Three Na+ sites are defined in the Na+-bound crystal structure of Na+, K+-ATPase. Sites I and II overlap with two K+ sites in the K+-bound structure, whereas site III is unique and Na+ specific. A glutamine in transmembrane helix M8 (Q925) appears from the crystal structures to coordinate Na+ at site III, but does not contribute to K+ coordination at sites I and II. Here we address the functional role of Q925 in the various conformational states of Na+, K+-ATPase by examining the mutants Q925A/G/E/N/L/I/Y. We characterized these mutants both enzymatically and electrophysiologically, thereby revealing their Na+ and K+ binding properties. Remarkably, Q925 substitutions had minor effects on Na+ binding from the intracellular side of the membrane - in fact, mutations Q925A and Q925G increased the apparent Na+ affinity - but caused dramatic reductions of the binding of K+ as well as Na+ from the extracellular side of the membrane. These results provide insight into the changes taking place in the Na+-binding sites, when they are transformed from intracellular- to extracellular-facing orientation in relation to the ion translocation process, and demonstrate the interaction between sites III and I and a possible gating function of Q925 in the release of Na+ at the extracellular side.


Assuntos
Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Substituição de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células/genética , Chlorocebus aethiops , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação/genética , Ligação Proteica/fisiologia , Conformação Proteica , Xenopus
2.
Proc Natl Acad Sci U S A ; 114(2): 316-321, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028214

RESUMO

Na+,K+-ATPase and H+,K+-ATPase are electrogenic and nonelectrogenic ion pumps, respectively. The underlying structural basis for this difference has not been established, and it has not been revealed how the H+,K+-ATPase avoids binding of Na+ at the site corresponding to the Na+-specific site of the Na+,K+-ATPase (site III). In this study, we addressed these questions by using site-directed mutagenesis in combination with enzymatic, transport, and electrophysiological functional measurements. Replacement of the cysteine C932 in transmembrane helix M8 of Na+,K+-ATPase with arginine, present in the H+,K+-ATPase at the corresponding position, converted the normal 3Na+:2K+:1ATP stoichiometry of the Na+,K+-ATPase to electroneutral 2Na+:2K+:1ATP stoichiometry similar to the electroneutral transport mode of the H+,K+-ATPase. The electroneutral C932R mutant of the Na+,K+-ATPase retained a wild-type-like enzyme turnover rate for ATP hydrolysis and rate of cellular K+ uptake. Only a relatively minor reduction of apparent Na+ affinity for activation of phosphorylation from ATP was observed for C932R, whereas replacement of C932 with leucine or phenylalanine, the latter of a size comparable to arginine, led to spectacular reductions of apparent Na+ affinity without changing the electrogenicity. From these results, in combination with structural considerations, it appears that the guanidine+ group of the M8 arginine replaces Na+ at the third site, thus preventing Na+ binding there, although allowing Na+ to bind at the two other sites and become transported. Hence, in the H+,K+-ATPase, the ability of the M8 arginine to donate an internal cation binding at the third site is decisive for the electroneutral transport mode of this pump.


Assuntos
Substituição de Aminoácidos , Arginina , Cisteína , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Sódio-Potássio/química , Sítios de Ligação , Ligação Competitiva , Cátions , Membrana Celular/enzimologia , ATPase Trocadora de Hidrogênio-Potássio/genética , Hemiplegia , Humanos , Canais Iônicos , Transporte de Íons , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenilalanina , Potássio/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Bombas de Próton , Alinhamento de Sequência , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
3.
Biochim Biophys Acta ; 1857(11): 1807-1828, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27577505

RESUMO

Na+,K+-ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na+,K+-ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na+,K+-ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na+,K+-ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na+ and K+ binding. In several cases the compromised function can be traced to disturbance of the Na+ specific binding site III. Recently, a secondary mutation was found to rescue the defective Na+ binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect.


Assuntos
Doenças Neurodegenerativas/genética , ATPase Trocadora de Sódio-Potássio/química , Animais , Humanos , Simulação de Dinâmica Molecular , Mutação , Doenças Neurodegenerativas/metabolismo , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
J Biol Chem ; 291(20): 10934-47, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27013656

RESUMO

The molecular mechanism underlying PKA-mediated regulation of Na(+),K(+)-ATPase was explored in mutagenesis studies of the potential PKA site at Ser-938 and surrounding charged residues. The phosphomimetic mutations S938D/E interfered with Na(+) binding from the intracellular side of the membrane, whereas Na(+) binding from the extracellular side was unaffected. The reduction of Na(+) affinity is within the range expected for physiological regulation of the intracellular Na(+) concentration, thus supporting the hypothesis that PKA-mediated phosphorylation of Ser-938 regulates Na(+),K(+)-ATPase activity in vivo Ser-938 is located in the intracellular loop between transmembrane segments M8 and M9. An extended bonding network connects this loop with M10, the C terminus, and the Na(+) binding region. Charged residues Asp-997, Glu-998, Arg-1000, and Lys-1001 in M10, participating in this bonding network, are crucial to Na(+) interaction. Replacement of Arg-1005, also located in the vicinity of Ser-938, with alanine, lysine, methionine, or serine resulted in wild type-like Na(+) and K(+) affinities and catalytic turnover rate. However, when combined with the phosphomimetic mutation S938E only lysine substitution of Arg-1005 was compatible with Na(+),K(+)-ATPase function, and the Na(+) affinity of this double mutant was reduced even more than in single mutant S938E. This result indicates that the positive side chain of Arg-1005 or the lysine substituent plays a mechanistic role as interaction partner of phosphorylated Ser-938, transducing the phosphorylation signal into a reduced affinity of Na(+) site III. Electrostatic interaction of Glu-998 is of minor importance for the reduction of Na(+) affinity by phosphomimetic S938E as revealed by combining S938E with E998A.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mutação de Sentido Incorreto , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/química , Mutagênese , Fosforilação/genética , Ratos , Sódio/química , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética
5.
J Biol Chem ; 290(15): 9801-11, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713066

RESUMO

The Na(+),K(+)-ATPase binds Na(+) at three transport sites denoted I, II, and III, of which site III is Na(+)-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na(+) affinity in the α1-, α2-, and α3-isoforms of Na(+),K(+)-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na(+)-coordinating residues in site III. Remarkably, the Na(+) affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na(+) binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na(+) affinity is likely intrinsic to the Na(+) binding pocket, and the underlying mechanism could be a tightening of Na(+) binding at Na(+) site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na(+),K(+) pump function in intact cells. Rescue of Na(+) affinity and Na(+) and K(+) transport by second-site mutation is unique in the history of Na(+),K(+)-ATPase and points to new possibilities for treatment of neurological patients carrying Na(+),K(+)-ATPase mutations.


Assuntos
Ácido Aspártico/genética , Ácido Glutâmico/genética , Mutação , ATPase Trocadora de Sódio-Potássio/genética , Sódio/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Sítios de Ligação/genética , Ligação Competitiva , Transporte Biológico/genética , Células COS , Chlorocebus aethiops , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Fosforilação , Potássio/metabolismo , Estrutura Terciária de Proteína , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Supressão Genética
6.
J Biol Chem ; 289(6): 3186-97, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356962

RESUMO

The neurological disorders familial hemiplegic migraine type 2 (FHM2), alternating hemiplegia of childhood (AHC), and rapid-onset dystonia parkinsonism (RDP) are caused by mutations of Na(+),K(+)-ATPase α2 and α3 isoforms, expressed in glial and neuronal cells, respectively. Although these disorders are distinct, they overlap in phenotypical presentation. Two Na(+),K(+)-ATPase mutations, extending the C terminus by either 28 residues ("+28" mutation) or an extra tyrosine ("+Y"), are associated with FHM2 and RDP, respectively. We describe here functional consequences of these and other neurological disease mutations as well as an extension of the C terminus only by a single alanine. The dependence of the mutational effects on the specific α isoform in which the mutation is introduced was furthermore studied. At the cellular level we have characterized the C-terminal extension mutants and other mutants, addressing the question to what extent they cause a change of the intracellular Na(+) and K(+) concentrations ([Na(+)]i and [K(+)]i) in COS cells. C-terminal extension mutants generally showed dramatically reduced Na(+) affinity without disturbance of K(+) binding, as did other RDP mutants. No phosphorylation from ATP was observed for the +28 mutation of α2 despite a high expression level. A significant rise of [Na(+)]i and reduction of [K(+)]i was detected in cells expressing mutants with reduced Na(+) affinity and did not require a concomitant reduction of the maximal catalytic turnover rate or expression level. Moreover, two mutations that increase Na(+) affinity were found to reduce [Na(+)]i. It is concluded that the Na(+) affinity of the Na(+),K(+)-ATPase is an important determinant of [Na(+)]i.


Assuntos
Distúrbios Distônicos/metabolismo , Enxaqueca com Aura/metabolismo , Mutação de Sentido Incorreto , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Distúrbios Distônicos/genética , Humanos , Transporte de Íons/genética , Enxaqueca com Aura/genética , Potássio/metabolismo , Estrutura Terciária de Proteína , Ratos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
7.
Hum Mol Genet ; 18(13): 2370-7, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19351654

RESUMO

The Na(+)/K(+)-ATPases are ion pumps of fundamental importance in maintaining the electrochemical gradient essential for neuronal survival and function. Mutations in ATP1A3 encoding the alpha3 isoform cause rapid-onset dystonia-parkinsonism (RDP). We report a de novo ATP1A3 mutation in a patient with typical RDP, consisting of an in-frame insertion of a tyrosine residue at the very C terminus of the Na(+)/K(+)-ATPase alpha3-subunit-the first reported RDP mutation in the C terminus of the protein. Expression studies revealed that there is no defect in the biogenesis or plasma membrane targeting, although cells expressing the mutant protein showed decreased survival in response to ouabain challenge. Functional analysis demonstrated a drastic reduction in Na(+) affinity in the mutant, which can be understood by structural modelling of the E1 and E2 conformations of the wild-type and mutant enzymes on the basis of the strategic location of the C terminus in relation to the third Na(+) binding site. The dramatic clinical presentation, together with the biochemical findings, provides both in vivo and in vitro evidence for a crucial role of the C terminus of the alpha-subunit in the function of the Na(+)/K(+)-ATPase and a key impact of Na(+) affinity in the pathophysiology of RDP.


Assuntos
Distonia/fisiopatologia , Mutagênese Insercional , Transtornos Parkinsonianos/fisiopatologia , ATPase Trocadora de Sódio-Potássio/genética , Sódio/metabolismo , Adolescente , Idade de Início , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Sobrevivência Celular , Distonia/genética , Distonia/metabolismo , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Linhagem , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Proc Natl Acad Sci U S A ; 101(9): 2776-81, 2004 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-14970331

RESUMO

The recently determined crystal structures of the sarcoplasmic reticulum Ca(2+)-ATPase show that in the E(1)Ca(2) form, domain A is almost isolated from the other cytoplasmic domains, P and N, whereas in E(2), domain A has approached domains P and N, with E183 of the highly conserved P-type ATPase signature sequence TGES in domain A now being close to the phosphorylated aspartate in domain P, thus raising the question whether E183 acquires a catalytic role in E(2) and E(2)P conformations. This study compares the partial reactions of mutant E183A and wild-type Ca(2+)-ATPase, using transient and steady-state kinetic measurements. It is demonstrated that dephosphorylation of the E(2)P phosphoenzyme intermediate, as well as reverse phosphorylation of E(2) with P(i), is severely inhibited in the mutant. Furthermore, the apparent affinity of E(2) for the phosphoryl transition state analog vanadate is reduced by three orders of magnitude, consistent with a destabilization of the transition state complex, and the mutant displays reduced apparent affinity for P(i) in the E(2) form. The E(1)Ca(2) conformation, on the other hand, shows normal phosphorylation with ATP and normal Ca(2+) binding properties, and the rates of the conformational transitions E(1)PCa(2) --> E(2)P and E(2) --> E(1)Ca(2) are only 2- to 3-fold reduced, relative to wild type. These results, which likely can be generalized to other P-type ATPases, indicate that E183 is critical for the phosphatase function of E(2) and E(2)P, possibly interacting with the phosphoryl group or attacking water in the transition state complex, but is of little functional importance in E(1) and E(1)P.


Assuntos
ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Ácido Glutâmico , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Sequência Conservada , Cinética , Fibras Musculares de Contração Rápida/enzimologia , Músculo Esquelético/enzimologia , Mutagênese Sítio-Dirigida , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Retículo Sarcoplasmático/enzimologia
9.
Biochem J ; 373(Pt 3): 723-32, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12723974

RESUMO

XR5118 [(3 Z,6 Z )-6-benzylidine-3-(5-(2-dimethylaminoethyl-thio-))-2-(thienyl)methylene-2,5-dipiperazinedione hydrochloride] can inactivate the anti-proteolytic activity of the serpin plasminogen activator inhibitor-1 (PAI-1), a potential therapeutic target in cancer and cardiovascular diseases. Serpins inhibit their target proteases by the P(1) residue of their reactive centre loop (RCL) forming an ester bond with the active-site serine residue of the protease, followed by insertion of the RCL into the serpin's large central beta-sheet A. In the present study, we show that the RCL of XR5118-inactivated PAI-1 is inert to reaction with its target proteases and has a decreased susceptibility to non-target proteases, in spite of a generally increased proteolytic susceptibility of specific peptide bonds elsewhere in PAI-1. The properties of XR5118-inactivated PAI-1 were different from those of the so-called latent form of PAI-1. Alanine substitution of several individual residues decreased the susceptibility of PAI-1 to XR5118. The localization of these residues in the three-dimensional structure of PAI-1 suggested that the XR5118-induced inactivating conformational change requires mobility of alpha-helix F, situated above beta-sheet A, and is in agreement with the hypothesis that XR5118 binds laterally to beta-sheet A. These results improve our understanding of the unique conformational flexibility of serpins and the biochemical basis for using PAI-1 as a therapeutic target.


Assuntos
Piperazinas/farmacologia , Inibidor 1 de Ativador de Plasminogênio/química , Vitronectina/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Inibidor 1 de Ativador de Plasminogênio/genética
10.
Biochem J ; 372(Pt 3): 747-55, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12656676

RESUMO

Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly converted to reactive centre-cleaved monomers, indicating substrate behaviour of the terminal PAI-1 molecules in the polymers. A quadruple mutant of PAI-1 with a retarded rate of latency transition also had a retarded rate of polymerization. Studying a number of serpins by native gel electrophoresis, ligand-induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general.


Assuntos
Biopolímeros/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biopolímeros/química , Eletroforese em Gel de Poliacrilamida , Cofator II da Heparina/farmacologia , Temperatura Alta , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Papaína/metabolismo , Inibidor 1 de Ativador de Plasminogênio/química , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serpinas/metabolismo , Espectrometria de Fluorescência/métodos , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...