Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 254(4): 74, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34529136

RESUMO

MAIN CONCLUSION: Growing degree hours (GDH) predicted floral bud development of 'Montmorency' sour cherry and explained changes in lethal temperatures (LT50) that preempted any visible changes in bud phenology. The gradual warming during late winter and early spring promotes floral bud development and, concomitantly, the de-acclimation of Prunus sp. flowers. In fact, once ecodormancy releases, an approximate 20 °C loss of hardiness occurs prior to any distinguishable changes in external bud phenology. The aim of the following work was to characterize the physiological changes of 'Montmorency' sour cherry floral buds as they transition from endo- and ecodormancy and resume growth, and to determine whether physiological and anatomical characteristics within the buds preempt or signify dormancy release to enable a better prediction of freeze susceptibility. Here, we present a developmental timeline of the preanthesis changes of 'Montmorency' floral buds, ovaries and anthers over 2 years following their completion of chilling and relate these changes to growing degree hours (GDH) and the lethal temperature (LT50) of flowers. Changes in bud dry weight (DW), fresh weight (FW), volume, and external phenology stage including the percentage of green color development of bud scales were predicted by heat accumulation but were not early predictors of the increasing freeze susceptibility of pistils. Between endodormancy and green tip stage, ovary volume increased nearly threefold and relative water content (RWC) increased from ~ 45 to 70% in both years. A linear mixed regression model indicated that RWC and the interaction between RWC and ovary growth were significant predictors of LT50. Importantly, the loss of ~ 20 °C of freeze resistance occurred between 45 and 57% RWC and preceded any detectable changes in bud phenology. Microsporogenesis was observed after dormancy release when measurable changes in the ovary and bud RWC had already occurred. A GDH model estimated freeze sensitivity of pistils and explained 93% of the variation in LT50 during preanthesis development. A simple GDH model to predict critical freeze temperature of pistils should aid producers to manage frost protection.


Assuntos
Flores , Prunus avium , Compostos Orgânicos , Prunus avium/fisiologia , Água
2.
PLoS One ; 14(12): e0225886, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800597

RESUMO

European pears (Pyrus communis L.) require a range of cold-temperature exposure to induce ethylene biosynthesis and fruit ripening. Physiological and hormonal responses to cold temperature storage in pear have been well characterized, but the molecular underpinnings of these phenomena remain unclear. An established low-temperature conditioning model was used to induce ripening of 'D'Anjou' and 'Bartlett' pear cultivars and quantify the expression of key genes representing ripening-related metabolic pathways in comparison to non-conditioned fruit. Physiological indicators of pear ripening were recorded, and fruit peel tissue sampled in parallel, during the cold-conditioning and ripening time-course experiment to correlate gene expression to ontogeny. Two complementary approaches, Nonparametric Multi-Dimensional Scaling and efficiency-corrected 2-(ΔΔCt), were used to identify genes exhibiting the most variability in expression. Interestingly, the enhanced alternative oxidase (AOX) transcript abundance at the pre-climacteric stage in 'Bartlett' and 'D'Anjou' at the peak of the conditioning treatments suggests that AOX may play a key and a novel role in the achievement of ripening competency. There were indications that cold-sensing and signaling elements from ABA and auxin pathways modulate the S1-S2 ethylene transition in European pears, and that the S1-S2 ethylene biosynthesis transition is more pronounced in 'Bartlett' as compared to 'D'Anjou' pear. This information has implications in preventing post-harvest losses of this important crop.


Assuntos
Climatério/genética , Temperatura Baixa , Frutas/fisiologia , Proteínas Mitocondriais/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Pyrus/fisiologia , Transcrição Gênica
3.
Ann Bot ; 119(3): 465-475, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28064193

RESUMO

BACKGROUND AND AIMS: The archetypical double sigmoid-shaped growth curve of the sweet cherry drupe (Prunus avium) does not address critical development from eco-dormancy to anthesis and has not been correlated to reproductive bud development. Accurate representation of the growth and development of post-anthesis ovaries is confounded by anthesis timing, fruiting-density and the presence of unfertilized and defective ovaries whose growth differs from those that persist to maturation. These factors were addressed to assess pre-anthesis and full-season growth and development of three sweet cherry cultivars, 'Chelan', 'Bing' and 'Sweetheart', differing primarily in seasonal duration and fruit size. METHODS: Volume was calculated from photographic measurements of reproductive buds, ovaries and pits at all phases of development. A population of unfertilized ovaries was produced using bee-exclusion netting to enable a statistical comparison with an open pollinated population to detect differences in size and shape between successful and failing fruit growth. Anthesis timing and fruiting-density were manipulated by floral extinction at the spur and whole-tree scales. Developmental time indices were analysed using polynomial curve fitting of log-transformed data supported by Richards and logistic functions of asymptotic growth of the pit and maturing fruit, respectively. KEY RESULTS: Pre-anthesis growth began at the completion of eco-dormancy. A slight decline in relative growth rate (RGR) was observed during bud scale separation approx. -16 d from anthesis (DFA) before resumption of exponential growth to a maximum about 14 DFA. After anthesis, reduced growth of unfertilized or defective ovaries was partly discriminated from successful fruit at 5 DFA and completely at 25 DFA. Time indices of RGR inflections were similar among cultivars when adjusted for anthesis date alone, until the end of pit growth. Asymptotic growth of the pit underpinned the declining growth rate of fruit at the end of the first exponential growth phase. Duration of the subsequent expansive growth phase accounted for genotypic differences in seasonal duration and final size. Pit size and final fruit size were inversely related to fruiting-density. CONCLUSIONS: Developmental differences among early, mid and late maturing cultivars were not detected until the final growth period.


Assuntos
Dormência de Plantas/genética , Prunus avium/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Genótipo , Prunus avium/crescimento & desenvolvimento , Prunus avium/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Fatores de Tempo
4.
Physiol Plant ; 150(3): 339-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24102457

RESUMO

Green 'Anjou' pear and its bud mutation, red 'Anjou' were compared to understand their differences in phenolic metabolism and its effect on primary metabolism. In the flesh of the two cultivars, no difference was detected in the concentration of any phenolic compound, the transcript level of MYB10 or the transcript levels or activities of key enzymes involved in anthocyanin synthesis. Compared with green 'Anjou', the shaded peel of red 'Anjou' had higher anthocyanin concentrations, higher transcript levels of MYB10 and higher activity of UDP-glucose:flavonoid 3-O-glycosyltransferase (UFGT), suggesting that MYB10 regulates UFGT to control anthocyanin synthesis in red 'Anjou' peel. In the sun-exposed peel, activities of phenylalanine ammonia lyase, dihydroflavonol reductase, flavonol synthase and anthocyanidin synthase as well as UFGT were higher in red 'Anjou' than in green 'Anjou'. The peel of red 'Anjou' had higher activities of sorbitol dehydrogenase, raffinose synthase and sucrose synthase and higher levels of raffinose, myo-inositol and starch, indicating that sorbitol metabolism, raffinose synthesis and starch synthesis were upregulated in red 'Anjou'. The flesh of red 'Anjou' had higher concentrations of glucose, but lower activities of ATP-dependent phosphofructokinase, pyruvate kinase and glucose-6-phosphate dehydrogenase and lower dark respiration. The peel of red 'Anjou' had higher activities of glutaminase, asparagine synthetase and asparaginase, and higher concentrations of asparagine, aspartate, alanine, valine, threonine and isoleucine. The effects of anthocyanin synthesis on primary metabolism in fruit peel are discussed.


Assuntos
Mutação , Fenóis/metabolismo , Pyrus/genética , Pyrus/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Meristema/genética , Meristema/metabolismo , Meristema/efeitos da radiação , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estruturas Vegetais/genética , Estruturas Vegetais/metabolismo , Estruturas Vegetais/efeitos da radiação , Pyrus/efeitos da radiação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Luz Solar
5.
J Exp Bot ; 63(14): 5365-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791825

RESUMO

A split-rooted containerized system was developed by approach grafting two, 1-year-old apple (Malus×domestica Borkh. cv 'Gala') trees to investigate the effect of soil moisture heterogeneity and total soil moisture content (θ(v)) on tree water relations, gas exchange, and leaf abscisic acid (ABA) concentration [ABA(leaf)]. Four irrigation treatments comprising a 2×2 factorial experiment of irrigation volume and placement were imposed over a 30-day period: control (C) [>100% of crop evapotranspiration (ET(c))] applied to both containers; PRD100 (>100% ET(c)) applied to one container only; and two treatments receiving 50% ET(c) applied to either one (PRD50) or both containers (DI50). Irrigation between PRD (partial rootzone drying) root compartments was alternated when θ(v) reached ~35% of field capacity. Maximum daily sap flow of the irrigated roots of PRD100 exceeded that of C roots throughout the experimental period. Pre-dawn water potential (Ψ(pd)) was similar between C and PRD100; however, daily water use and mid-day gas exchange of PRD100 was 30% lower. Slightly higher [ABA(leaf)] was observed in PRD100, but the effect was not significant and could not explain the observed reductions in leaf gas exchange. Both 50% ET(c) treatments had similar, but lower θ(v), Ψ(pd), and gas exchange, and higher [ABA(leaf)] than C and PRD100. Regardless of treatment, the container having the lower θ(v) of a split-rooted system correlated poorly with [ABA(leaf)], but when θ(v) of both containers or θ(v) of the container possessing the higher soil moisture was used, the relationship markedly improved. These results imply that apple canopy gas exchange and [ABA(leaf)] are responsive to the total soil water environment.


Assuntos
Ácido Abscísico/metabolismo , Fisiologia/métodos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Dessecação , Malus/crescimento & desenvolvimento , Malus/metabolismo , Fotossíntese , Transpiração Vegetal , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...