Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33158860

RESUMO

Arthropod herbivores cause substantial economic costs that drive an increasing need to develop environmentally sustainable approaches to herbivore control. Increasing plant diversity is expected to limit herbivory by altering plant-herbivore and predator-herbivore interactions, but the simultaneous influence of these interactions on herbivore impacts remains unexplored. We compiled 487 arthropod food webs in two long-running grassland biodiversity experiments in Europe and North America to investigate whether and how increasing plant diversity can reduce the impacts of herbivores on plants. We show that plants lose just under half as much energy to arthropod herbivores when in high-diversity mixtures versus monocultures and reveal that plant diversity decreases effects of herbivores on plants by simultaneously benefiting predators and reducing average herbivore food quality. These findings demonstrate that conserving plant diversity is crucial for maintaining interactions in food webs that provide natural control of herbivore pests.


Assuntos
Artrópodes , Herbivoria , Animais , Biodiversidade , Cadeia Alimentar , Plantas
2.
Ecology ; 101(7): e03057, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239498

RESUMO

The diversity of primary producers strongly affects the structure and diversity of species assemblages at other trophic levels. However, limited knowledge exists of how plant diversity effects at small spatial scales propagate to consumer communities at larger spatial scales. We assessed arthropod community ß and γ-diversity in response to experimentally manipulated plant community richness in two long-term grassland biodiversity experiments (Jena, Germany and Cedar Creek, USA) replicated over two years. We calculated arthropod species turnover among all plot combinations (ß-diversity), and accumulated number of arthropod species occurring on (1) all pairwise plot combinations and (2) 40 randomly selected six-plot combinations (γ-diversity). The components of arthropod diversity were tested against two measures of plant diversity, namely average plant α-diversity ( PSR¯ ) and the average difference in plant α-diversity between plots (ΔPSR). Whereas PSR¯ points to the overall importance of plant α-diversity for arthropod community turnover and diversity on a larger scale, ΔPSR represents the role of habitat heterogeneity. We demonstrate that arthropod γ-diversity is supported by high, homogeneous plant α-diversity, despite lower arthropod ß-diversity among high- compared to low-diversity plant communities. We also show that, in six-plot combinations, average plant α-diversity has a positive influence on arthropod γ-diversity only when homogeneity in plant α-diversity is also high. Varying heterogeneity in six-plot combinations showed that combinations consisting solely of plots with an intermediate level of plant α-diversity support a higher number of arthropod species compared to combinations that contain a mix of high- and low-diversity plots. In fact, equal levels of arthropod diversity were found for six-plot combinations with only intermediate or high plant α-diversity, due to saturating benefits of local and larger-scale plant diversity for higher trophic levels. Our results, alongside those of recent observational studies, strongly suggest that maintaining high α-diversity in plant communities is important for conserving multiple components of arthropod diversity. As arthropods carry out a range of essential ecosystem functions, such as pollination and natural pest-control, our findings provide crucial insight for effective planning of human-dominated landscapes to maximize both ecological and economic benefits in grassland systems.


Assuntos
Artrópodes , Pradaria , Animais , Biodiversidade , Ecossistema , Alemanha , Humanos
3.
Nat Commun ; 10(1): 4981, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672992

RESUMO

Soil nitrogen mineralisation (Nmin), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net Nmin) varies with soil properties and climate. However, because most global-scale assessments of net Nmin are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net Nmin across 30 grasslands worldwide. We find that realised Nmin is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. Potential Nmin only weakly correlates with realised Nmin, but contributes to explain realised net Nmin when combined with soil and climatic variables. We provide novel insights of global realised soil net Nmin and show that potential soil net Nmin data available in the literature could be parameterised with soil and climate data to better predict realised Nmin.

4.
Ecol Lett ; 14(6): 537-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21435139

RESUMO

Biodiversity is an essential determinant of ecosystem functioning. Numerous studies described positive effects of diversity on the functioning of communities arising from complementary resource use and facilitation. However, high biodiversity may also increase competitive interactions, fostering antagonism and negatively affecting community performance. Using experimental bacterial communities we differentiated diversity effects based on genotypic richness and dissimilarity. We show that these diversity characteristics have opposite effects on ecosystem functioning. Genotypic dissimilarity governed complementary resource use, improving ecosystem functioning in complex resource environments. Contrastingly, genotypic richness drove allelopathic interactions, mostly reducing ecosystem functioning. The net biodiversity effect on community performance resulted from the interplay between the genetic structure of the community and resource complexity. These results demonstrate that increasing richness, without concomitantly increasing dissimilarity, can decrease ecosystem functioning in simple environments due to antagonistic interactions, an effect insufficiently considered so far in mechanistic models of the biodiversity-ecosystem functioning relationship.


Assuntos
Ecossistema , Variação Genética , Genótipo , Interações Microbianas/genética , Pseudomonas fluorescens/genética , Biodiversidade , Pseudomonas fluorescens/fisiologia
5.
Ecology ; 91(2): 485-96, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20392013

RESUMO

The global decline in biodiversity has generated concern over the consequences for ecosystem functioning and services. Although ecosystem functions driven by soil microorganisms such as plant productivity, decomposition, and nutrient cycling are of particular importance, interrelationships between plant diversity and soil microorganisms are poorly understood. We analyzed the response of soil microorganisms to variations in plant species richness (1-60) and plant functional group richness (1-4) in an experimental grassland system over a period of six years. Major abiotic and biotic factors were considered for exploring the mechanisms responsible for diversity effects. Further, microbial growth characteristics were assessed following the addition of macronutrients. Effects of plant diversity on soil microorganisms were most pronounced in the most diverse plant communities though differences only became established after a time lag of four years. Differences in microbial growth characteristics indicate successional changes from a disturbed (zymogeneous) to an established (autochthonous) microbial community four years after establishment of the experiment. Supporting the singular hypothesis for plant diversity, the results suggest that plant species are unique, each contributing to the functioning of the belowground system. The results reinforce the need for long-term biodiversity experiments to fully appreciate consequences of current biodiversity loss for ecosystem functioning.


Assuntos
Biodiversidade , Plantas/classificação , Microbiologia do Solo , População
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA