Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 2): 156126, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35605850

RESUMO

Sand dams are impermeable water harvesting structures built to collect and store water within the volume of sediments transported by ephemeral rivers. The artificial sandy aquifer created by the sand dam reduces evaporation losses relative to surface water storage in traditional dams. Recent years have seen a renaissance of studies on sand dams as an effective water scarcity adaptation strategy for drylands. However, many aspects of their functioning and effectiveness are still unclear. Literature reviews have pointed to a range of research gaps that need further scientific attention, such as river corridors and network dynamics, watershed-scale impacts, and interaction with social dynamics. However, the scattered and partially incomplete information across the different reviews would benefit from an integrated framework for directing future research efforts. This paper is a collaborative effort of different research groups active on sand dams and stems from the need to channel future research efforts on this topic in a thorough and coherent way. We synthesize the pivotal research gaps of a) unclear definition of "functioning" sand dams, b) lack of methodologies for watershed-scale analysis, c) neglect of social aspects in sand dam research, and d) underreported impacts of sand dams. We then propose framing future research to better target the synthesized gaps, including using the social-ecological systems framework to better capture the interconnected social and biophysical research gaps on sand dams, fully utilizing the potential of remote sensing in large-scale studies and collecting sand dam cases across the world to create an extensive database to advance evidence-based research on sand dams.


Assuntos
Areia , Água , Ecossistema , Rios , Abastecimento de Água
2.
World J Diabetes ; 6(2): 312-20, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25789112

RESUMO

According to the American Diabetes Association, diabetes was the seventh leading cause of death, and diabetic retinopathy the leading cause of blindness in working age adults in the United States in 2010. Diabetes is characterized by hyperglycemia associated with either hypoinsulinemia or insulin resistance, and over time, this chronic metabolic condition may lead to various complications including kidney failure, heart attacks, and retinal degeneration. In order to better understand the molecular basis of this disease and its complications, animal models have been the primary approach used to investigate the effects of diabetes on various tissues or cell types of the body, including the retina. However, inherent to these animal models are critical limitations that make the insight gained from these models challenging to apply to the human pathology. These difficulties in translating the knowledge obtained from animal studies have led a growing number of research groups to explore the diabetes complications, especially diabetic retinopathy, on tissues from human donors. This review summarizes the data collected from diabetic patients at various stages of diabetic retinopathy and classifies the data based upon their relevance to the main aspects of diabetic retinopathy: retinal vasculature dysfunction, inflammation, and neurodegeneration. This review discusses the importance of those studies to discriminate and establish the relevance of the findings obtained from animal models but also the limitations of such approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...