Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11195, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590548

RESUMO

Climate change is altering the distribution and abundance of marine species, especially in Arctic and sub-Arctic regions. In the eastern Bering Sea, home of the world's largest run of sockeye salmon (Oncorhynchus nerka), juvenile sockeye salmon abundance has increased and their migration path shifted north with warming, 2002-2018. The reasons for these changes are poorly understood. For these sockeye salmon, we quantify environmental and biological covariate effects within spatio-temporal species distribution models. Spatio-temporally, with respect to juvenile sockeye salmon densities: (1) sea surface temperature had a nonlinear effect, (2) large copepod, Calanus, a minor prey item, had no effect, (3) age-0 pollock (Gadus chalcogrammus), a major prey item during warm years, had a positive linear effect, and (4) juvenile pink salmon (O. gorbuscha) had a positive linear effect. Temporally, annual biomass of juvenile sockeye salmon was nonlinearly related to sea temperature and positively related to age-0 pollock and juvenile pink salmon abundance. Results indicate that sockeye salmon distributed with and increased in abundance with increases in prey, and reached a threshold for optimal temperatures in the eastern Bering Sea. Changes in population dynamics and distribution of sockeye salmon in response to environmental variability have potential implications for projecting specific future food securities and management of fisheries in Arctic waters.

2.
Harmful Algae ; 114: 102205, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550288

RESUMO

Climate change-related ocean warming and reduction in Arctic sea ice extent, duration and thickness increase the risk of toxic blooms of the dinoflagellate Alexandrium catenella in the Alaskan Arctic. This algal species produces neurotoxins that impact marine wildlife health and cause the human illness known as paralytic shellfish poisoning (PSP). This study reports Paralytic Shellfish Toxin (PST) concentrations quantified in Arctic food web samples that include phytoplankton, zooplankton, benthic clams, benthic worms, and pelagic fish collected throughout summer 2019 during anomalously warm ocean conditions. PSTs (saxitoxin equivalents, STX eq.) were detected in all trophic levels with concentrations above the seafood safety regulatory limit (80 µg STX eq. 100 g-1) in benthic clams collected offshore on the continental shelf in the Beaufort, Chukchi, and Bering Seas. Most notably, toxic benthic clams (Macoma calcarea) were found north of Saint Lawrence Island where Pacific walruses (Odobenus rosmarus) are known to forage for a variety of benthic species, including Macoma. Additionally, fecal samples collected from 13 walruses harvested for subsistence purposes near Saint Lawrence Island during March to May 2019, all contained detectable levels of STX, with fecal samples from two animals (78 and 72 µg STX eq. 100 g-1) near the seafood safety regulatory limit. In contrast, 64% of fecal samples from zooplankton-feeding bowhead whales (n = 9) harvested between March and September 2019 in coastal waters of the Beaufort Sea near Utqiagvik (formerly Barrow) and Kaktovik were toxin-positive, and those levels were significantly lower than in walruses (max bowhead 8.5 µg STX eq. 100 g-1). This was consistent with the lower concentrations of PSTs found in regional zooplankton prey. Maximum ecologically-relevant daily toxin doses to walruses feeding on clams and bowhead whales feeding on zooplankton were estimated to be 21.5 and 0.7 µg STX eq. kg body weight-1 day-1, respectively, suggesting that walruses had higher PST exposures than bowhead whales. Average and maximum STX doses in walruses were in the range reported previously to cause illness and/or death in humans and humpback whales, while bowhead whale doses were well below those levels. These findings raise concerns regarding potential increases in PST/STX exposure risks and health impacts to Arctic marine mammals as ocean warming and sea ice reduction continue.


Assuntos
Bivalves , Baleia Franca , Dinoflagellida , Animais , Cadeia Alimentar , Oceanos e Mares , Saxitoxina , Frutos do Mar , Morsas , Zooplâncton
3.
PLoS One ; 12(6): e0178955, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28658253

RESUMO

In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2-3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which may have provided a high quality alternate prey. In 2016 a retracted Cold Pool precluded significant refuging in the north, though pollock foraging on available euphausiids over the southern shelf may have mitigated the effect of warm waters and reduced large availability of large copepods. This work presents the hypothesis that, in the short term, juvenile pollock can mitigate the drastic impacts of sustained warming. This short-term buffering, combined with recent observations (2017) of renewed sea ice presence over southeast Bering Sea shelf and a potential return to average or at least cooler ecosystem conditions, suggests that recent warm year stanza (2014-2016) effects to the pollock population and fishery may be mitigated.


Assuntos
Peixes , Fitoplâncton , Animais , Oceanos e Mares , Temperatura , Zooplâncton
4.
Biol Lett ; 12(9)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27651532

RESUMO

Timing of spring sea-ice retreat shapes the southeast Bering Sea food web. We compared summer seabird densities and average bathymetry depth distributions between years with early (typically warm) and late (typically cold) ice retreat. Averaged over all seabird species, densities in early-ice-retreat-years were 10.1% (95% CI: 1.1-47.9%) of that in late-ice-retreat-years. In early-ice-retreat-years, surface-foraging species had increased numbers over the middle shelf (50-150 m) and reduced numbers over the shelf slope (200-500 m). Pursuit-diving seabirds showed a less clear trend. Euphausiids and the copepod Calanus marshallae/glacialis were 2.4 and 18.1 times less abundant in early-ice-retreat-years, respectively, whereas age-0 walleye pollock Gadus chalcogrammus near-surface densities were 51× higher in early-ice-retreat-years. Our results suggest a mechanistic understanding of how present and future changes in sea-ice-retreat timing may affect top predators like seabirds in the southeastern Bering Sea.


Assuntos
Aves/fisiologia , Cadeia Alimentar , Camada de Gelo , Estações do Ano , Animais , Regiões Árticas , Copépodes , Ecossistema , Euphausiacea , Gadiformes , Oceano Pacífico , Zooplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...