Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112892

RESUMO

Salmonella, the causative agent of several diseases in humans and animals, including salmonellosis, septicemia, typhoid fever, and fowl typhoid, poses a serious threat to global public health and food safety. Globally, reports of therapeutic failures are increasing because of the increase in bacterial antibiotic resistance. Thus, this work highlights the combined phage-antibiotic therapy as a promising approach to combating bacterial resistance. In this manner, the phage ZCSE9 was isolated, and the morphology, host infectivity, killing curve, combination with kanamycin, and genome analysis of this phage were all examined. Morphologically, phage ZCSE9 is a siphovirus with a relatively broad host range. In addition, the phage can tolerate high temperatures until 80 °C with one log reduction and a basic environment (pH 11) without a significant decline. Furthermore, the phage prevents bacterial growth in the planktonic state, according to the results of the time-killing curve. Moreover, using the phage at MOI 0.1 with kanamycin against five different Salmonella serotypes reduces the required antibiotics to inhibit the growth of the bacteria. Comparative genomics and phylogenetic analysis suggested that phage ZCSE9, along with its close relatives Salmonella phages vB_SenS_AG11 and wksl3, belongs to the genus Jerseyvirus. In conclusion, phage ZCSE9 and kanamycin form a robust heterologous antibacterial combination that enhances the effectiveness of a phage-only approach for combating Salmonella.


Assuntos
Bacteriófagos , Infecções por Salmonella , Fagos de Salmonella , Salmonella enterica , Animais , Humanos , Bacteriófagos/genética , Canamicina/farmacologia , Filogenia , Salmonella/genética , Fagos de Salmonella/genética , Antibacterianos/farmacologia , Genoma Viral
2.
Chem Commun (Camb) ; 51(38): 8010-3, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25846495

RESUMO

Here, we report a ground-state interaction between the positively charged cationic porphyrin and the negatively charged carboxylate groups of the thiol ligands on the surface of CdTe quantum dots (QDs), leading to the formation of a stable nanoassembly between the two components. Our time-resolved data clearly demonstrate that we can dramatically tune the intersystem crossing (ISC) and the triplet state lifetime of porphyrin by changing the size of the QDs in the nanoassembly.

3.
Small ; 11(1): 112-8, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25163799

RESUMO

Absorbent layers of semiconductor quantum dots (QDs) are now used as material platforms for low-cost, high-performance solar cells. The semiconductor metal oxide nanoparticles as an acceptor layer have become an integral part of the next generation solar cell. To achieve sufficient electron transfer and subsequently high conversion efficiency in these solar cells, however, energy-level alignment and interfacial contact between the donor and the acceptor units are needed. Here, the layer-by-layer (LbL) technique is used to assemble ZnO nanoparticles (NPs), providing adequate PbS QD uptake to achieve greater interfacial contact compared with traditional sputtering methods. Electron injection at the PbS QD and ZnO NP interface is investigated using broadband transient absorption spectroscopy with 120 femtosecond temporal resolution. The results indicate that electron injection from photoexcited PbS QDs to ZnO NPs occurs on a time scale of a few hundred femtoseconds. This observation is supported by the interfacial electronic-energy alignment between the donor and acceptor moieties. Finally, due to the combination of large interfacial contact and ultrafast electron injection, this proposed platform of assembled thin films holds promise for a variety of solar cell architectures and other settings that principally rely on interfacial contact, such as photocatalysis.

4.
Nano Lett ; 13(4): 1393-8, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23520995

RESUMO

In the present study, we introduce a novel method for in vivo imaging of the biodistribution of single wall carbon nanotubes (SWNTs) labeled with recombinant thermo-stable Luciola cruciata luciferase (LcL). In addition, we highlight a new application for green fluorescent proteins in which they are utilized as imaging moieties for SWNTs. Carbon nanotubes show great positive potential compared to other drug nanocarriers with respect to loading capacity, cell internalization, and biodegradability. We have also studied the effect of binding mode (chemical conjugation and physical adsorption) on the chemiluminescence activity, decay rate, and half-life. We have shown that through proper chemical conjugation of LcL to CNTs, LcL remained biologically active for the catalysis of d-luciferin in the presence of ATP to release detectable amounts of photons for in vivo imaging. Chemiluminescence of LcL allows imaging of CNTs and their cargo in nonsuperficial locations at an organ resolution with no need of an excitation source. Loading LcL-CNTs with the antitumor antibiotic doxorubicin did not alter their biological activity for imaging. In vivo imaging of LcL-CNTs has been carried out using "IVIS spectrum" showing the uptake of LcL-CNTs by different organs in mice. We believe that the LcL-CNT system is an advanced powerful tool for in vivo imaging and therefore a step toward the advancement of the nanomedicine field.


Assuntos
Diagnóstico por Imagem , Doxorrubicina/química , Luciferases/química , Nanotubos de Carbono/química , Animais , Estabilidade Enzimática , Vaga-Lumes/enzimologia , Camundongos , Coloração e Rotulagem , Temperatura
5.
J Colloid Interface Sci ; 387(1): 135-40, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22939259

RESUMO

Thin films of polydimethylsiloxane (PDMS) and ZnO quantum dots (QDs) were built up as multilayers by spin-coating. The films are characterized by a UV-blocking ability that increases with increasing number of bilayers. Photoluminescence (PL) emission spectra of the thin films occur at 522 nm, which is the PL wavelength of the ZnO QDs dispersion, but with a lower intensity and a quantum yield (QY) less than 1% that of the dispersion. Cross-linking has introduced new features to the absorption spectra in that the absorption peak was absent. These changes were attributed to the morphological and structural changes revealed by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. TEM showed that the ZnO particle size in the film increased from 7 (±2.7) nm to 16 (±7.8) upon cross-linking. The FTIR spectra suggest that ZnO QDs are involved in the cross-linking of PDMS and that the surface of the ZnO QDs has been chemically modified.

6.
ACS Appl Mater Interfaces ; 4(6): 2920-5, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22642360

RESUMO

Thin UV-blocking films of poly(methyl methacrylate) (PMMA) and ZnO quantum dots (QDs) were built-up by spin-coating. Ellipsometry reveals average thicknesses of 9.5 and 8.6 nm per bilayer before and after heating at 100 °C for one hour, respectively. The surface roughness measured by Atomic force microscopy (AFM) was 3.6 and 8.4 nm for the one and ten bilayer films, respectively. The linear increase in thickness as well as the low surface roughness increment per bilayer indicates a stratified multilayer structure and a smooth interface without aggregation. The absorption of UV radiation increased with increasing number of bilayers. At the same time, transmission was damped at wavelengths shorter than 375 nm. The thin films had a high and constant transparency in the visible region. Green-light emitting QDs could be detected by confocal microscopy at a concentration of 20% in a single layer of PMMA/ZnO. PMMA/ZnO QDs thin films are hydrophobic, as indicated by contact angle measurements.

7.
J Colloid Interface Sci ; 363(2): 566-72, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21868023

RESUMO

Over the last decade, the use of nanocellulose in advanced technological applications has been promoted both due the excellent properties of this material in combination with its renewability. In this study, multilayered thin films composed of nanofibrillated cellulose (NFC), polyvinyl amine (PVAm) and silica nanoparticles were fabricated on polydimethylsiloxane (PDMS) using a layer-by-layer adsorption technique. The multilayer build-up was followed in situ by quartz crystal microbalance with dissipation, which indicated that the PVAm-SiO(2)-PVAm-NFC system adsorbs twice as much wet mass material compared to the PVAm-NFC system for the same number of bilayers. This is accompanied with a higher viscoelasticity for the PVAm-SiO(2)-PVAm-NFC system. Ellipsometry indicated a dry-state thickness of 2.2 and 3.4 nm per bilayer for the PVAm-NFC system and the PVAm-SiO(2)-PVAm-NFC system, respectively. Atomic force microscopy height images indicate that in both systems, a porous network structure is achieved. Young's modulus of these thin films was determined by the Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) technique. The Young's modulus of the PVAm/NFC films was doubled, from 1 to 2 GPa, upon incorporation of silica nanoparticles in the films. The introduction of the silica nanoparticles lowered the refractive index of the films, most probably due to an increased porosity of the films.


Assuntos
Celulose/química , Membranas Artificiais , Nanoestruturas/química , Dióxido de Silício/química , Tamanho da Partícula , Polivinil/química , Propriedades de Superfície
8.
Biomacromolecules ; 12(4): 961-9, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21395236

RESUMO

The Young's modulus of multilayer films containing nanofibrillated cellulose (NFC) and polyethyleneimine (PEI) was determined using the strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) technique. (1) Multilayer films were built up on polydimethylsiloxane substrates using electrostatic layer-by-layer assembly. At 50% relative humidity, SIEBIMM gave a constant Young's modulus of 1.5 ± 0.2 GPa for 35-75 nm thick films. Conversely, in vacuum, the Young's modulus was 10 times larger, at 17.2 ± 1.2 GPa. A slight decrease in buckling wavelength with increasing strain was observed by scanning electron microscopy with in situ compression, and above 10% strain, extensive cracking parallel to the compressive direction occurred. We conclude that whereas PEI acts as a "glue" to hold multiple layers of NFC together, it prevents full development of hydrogen bonding and specific fibril-fibril interactions, and at high humidity, its hygroscopic nature decreases the elastic modulus when compared with pure NFC films.


Assuntos
Celulose/química , Nanoestruturas , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...