Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 69(6): 1233-1245, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28086000

RESUMO

OBJECTIVE: Cartilage damage and subchondral bone changes are closely connected in osteoarthritis. Nevertheless, how these processes are interlinked is, to date, incompletely understood. This study was undertaken to investigate the mechanistic role of a cartilage-derived protein, upper zone of growth plate and cartilage matrix-associated protein (UCMA), in osteoarthritis-related cartilage and bone changes. METHODS: UCMA expression was assessed in healthy and osteoarthritic human and mouse cartilage. For analysis of cartilage and bone changes, osteoarthritis was induced by destabilization of the medial meniscus (DMM) in wild-type (WT) and Ucma-deficient mice. UCMA-collagen interactions, the effect of UCMA on aggrecanase activity, and the impact of recombinant UCMA on osteoclast differentiation were studied in vitro. RESULTS: UCMA was found to be overexpressed in human and mouse osteoarthritic cartilage. DMM-triggered cartilage changes, including increased structural damage, proteoglycan loss, and chondrocyte cell death, were aggravated in Ucma-deficient mice compared to WT littermates, thereby demonstrating the potential chondroprotective effects of UCMA. Moreover, UCMA inhibited ADAMTS-dependent aggrecanase activity and directly interacted with cartilage-specific collagen types. In contrast, osteoarthritis-related bone changes were significantly reduced in Ucma-deficient mice, showing less pronounced osteophyte formation and subchondral bone sclerosis. Mechanistically, UCMA directly promoted osteoclast differentiation in vitro. CONCLUSION: UCMA appears to link cartilage with bone changes in osteoarthritis by supporting cartilage integrity as an endogenous inhibitor of aggrecanases while also promoting osteoclastogenesis and subchondral bone turnover. Thus, UCMA represents an important link between cartilage and bone in osteoarthritis.


Assuntos
Remodelação Óssea/fisiologia , Cartilagem Articular/fisiopatologia , Lâmina de Crescimento/metabolismo , Proteínas Matrilinas/metabolismo , Osteoartrite/fisiopatologia , Animais , Cartilagem Articular/patologia , Estudos de Casos e Controles , Condrócitos/metabolismo , Endopeptidases/metabolismo , Humanos , Camundongos , Osteoartrite/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/fisiologia , Proteoglicanas/metabolismo
2.
Front Plant Sci ; 6: 1085, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697039

RESUMO

Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development.

3.
J Cell Physiol ; 227(5): 2207-16, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21928342

RESUMO

Wnt inhibitory factor 1 (Wif-1) is a secreted antagonist of Wnt signalling. We recently demonstrated that this molecule is expressed predominantly in superficial layers of epiphyseal cartilage but also in bone and tendon. Moreover, we showed that Wif-1 is capable of binding to several cartilage-related Wnt ligands and interferes with Wnt3a-dependent Wnt signalling in chondrogenic cells. Here we provide evidence that the biological function of Wif-1 may not be confined to the modulation of Wnt signalling but appears to include the regulation of other signalling pathways. Thus, we show that Wif-1 physically binds to connective tissue growth factor (CTGF/CCN2) in vitro, predominantly by interaction with the C-terminal cysteine knot domain of CTGF. In vivo such an interaction appears also likely since the expression patterns of these two secreted proteins overlap in peripheral zones of epiphyseal cartilage. In chondrocytes CTGF has been shown to induce the expression of cartilage matrix genes such as aggrecan (Acan) and collagen2a1 (Col2a1). In this study we demonstrate that Wif-1 is capable to interfere with CTGF-dependent induction of Acan and Col2a1 gene expression in primary murine chondrocytes. Conversely, CTGF does not interfere with Wif-1-dependent inhibition of Wnt signalling. These results indicate that Wif-1 may be a multifunctional modulator of signalling pathways in the cartilage compartment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Agrecanas/genética , Agrecanas/metabolismo , Animais , Cartilagem/citologia , Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Fator de Crescimento do Tecido Conjuntivo/química , Fator de Crescimento do Tecido Conjuntivo/genética , Células HEK293 , Humanos , Camundongos , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
4.
Bone ; 50(3): 670-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155508

RESUMO

Ucma (Upper zone of growth plate and Cartilage Matrix Associated protein) is a highly conserved tyrosine-sulphated secreted protein of Mw 17 kDa, which is expressed by juvenile chondrocytes. To evaluate the physiological function of this novel cartilage protein, we generated a Ucma-deficient mouse strain by introducing a lacZ/neoR-cassette into the first exon of the Ucma gene. This mutation results in the complete loss of Ucma mRNA and protein expression. Surprisingly, however, although previous in vitro studies implied a role for Ucma in calcification and ossification, these processes were not affected in Ucma-deficient mice during normal development. Likewise, cartilage development was normal. While in previous works Ucma was mainly detected in the cartilage of embryonic and young mice, we detected Ucma expression also in the adult cartilage of the ribs using the lacZ cassette under the control of the Ucma promoter. Moreover, Ucma protein was specifically detected in adult growth plate cartilage by immunohistochemistry. Considering that skeletal development in Ucma-deficient mice is not significantly impaired, protein expression in adult cartilage indicates that Ucma might be involved in skeletal homeostasis and in the mechanical properties of the skeleton during challenging conditions such as ageing or disease.


Assuntos
Osso e Ossos/metabolismo , Calcificação Fisiológica/fisiologia , Osteogênese/fisiologia , Proteínas/metabolismo , Animais , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Condrócitos/metabolismo , Proteínas da Matriz Extracelular , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Proteínas/genética
5.
J Cell Sci ; 122(Pt 20): 3627-37, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19755491

RESUMO

Wnt factors are involved in the regulation of all steps of cartilage development. The activity of Wnt factors is generally regulated at the extracellular level by factors like the Dkk family, sFRPs, Cerberus and Wnt inhibitory factor 1 (Wif-1). Here we report that Wif-1 is highly expressed at cartilage-mesenchyme interfaces of the early developing skeleton. In fetal and postnatal skeletal development, Wif-1 is expressed in a sharply restricted zone in the upper hyaline layer of epiphyseal and articular cartilage and in trabecular bone. Coimmunoprecipitation and pull-down assays using recombinant Wif-1 and Wnt factors show specific binding of Wif-1 to Wnt3a, Wnt4, Wnt5a, Wnt7a, Wnt9a and Wnt11. Moreover, Wif-1 was able to block Wnt3a-mediated activation of the canonical Wnt signalling pathway. Consequently, Wif-1 impaired growth of mesenchymal precursor cells and neutralised Wnt3a-mediated inhibition of chondrogenesis in micromass cultures of embryonic chick limb-bud cells. These results identify Wif-1 as a novel extracellular Wnt modulator in cartilage biology.


Assuntos
Cartilagem/embriologia , Cartilagem/metabolismo , Condrogênese , Proteínas da Matriz Extracelular/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Proliferação de Células , Embrião de Galinha , Condrogênese/genética , Desenvolvimento Embrionário , Epífises/embriologia , Epífises/metabolismo , Proteínas da Matriz Extracelular/genética , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Botões de Extremidades/citologia , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mesoderma/citologia , Camundongos , Ligação Proteica , Transdução de Sinais , Técnicas de Cultura de Tecidos , Proteína Wnt3 , Proteína Wnt3A
6.
Plant Cell ; 18(8): 1908-30, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16798888

RESUMO

Flagellate green algae have developed a visual system, the eyespot apparatus, which allows the cell to phototax. To further understand the molecular organization of the eyespot apparatus and the phototactic movement that is controlled by light and the circadian clock, a detailed understanding of all components of the eyespot apparatus is needed. We developed a procedure to purify the eyespot apparatus from the green model alga Chlamydomonas reinhardtii. Its proteomic analysis resulted in the identification of 202 different proteins with at least two different peptides (984 in total). These data provide new insights into structural components of the eyespot apparatus, photoreceptors, retina(l)-related proteins, members of putative signaling pathways for phototaxis and chemotaxis, and metabolic pathways within an algal visual system. In addition, we have performed a functional analysis of one of the identified putative components of the phototactic signaling pathway, casein kinase 1 (CK1). CK1 is also present in the flagella and thus is a promising candidate for controlling behavioral responses to light. We demonstrate that silencing CK1 by RNA interference reduces its level in both flagella and eyespot. In addition, we show that silencing of CK1 results in severe disturbances in hatching, flagellum formation, and circadian control of phototaxis.


Assuntos
Proteínas de Algas/fisiologia , Chlamydomonas reinhardtii/fisiologia , Proteínas de Algas/análise , Proteínas de Algas/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/análise , Caseína Quinase I/análise , Caseína Quinase I/metabolismo , Caseína Quinase I/fisiologia , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Ritmo Circadiano , Flagelos/metabolismo , Flagelos/fisiologia , Luz , Movimento/fisiologia , Monoéster Fosfórico Hidrolases/análise , Fosfotransferases/análise , Proteômica , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...