Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13414, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591990

RESUMO

Metal compounds continued to attract diverse applications due to their malleability in several capacities. In this study, we present our findings on the crystal structures and functional properties of Ni2+ and Cu2+ complexes of N'-(2,6-dichlorophenyl)-N-mesitylformamidine dithiocarbamate (L) comprising [Ni-(L)2] (1) and [Cu-(L)2] (2) with a four-coordinate metal center. We established the two complex structures through 1H and 13C nuclear magnetic resonance (NMR), elemental, and single-crystal X-ray analysis. The analyses showed that the two complexes are isomorphous, having P21/c as a space group and a unit-cell similarity index (π) of 0.002. The two complexes conform to a distorted square planar geometry around the metal centers. The calculated and experimental data, including bond lengths, angles, and NMR values, are similar. Hirshfeld surface analysis revealed the variational contribution of the different types of intermolecular contacts driven by the crystal lattice of the two solvated complexes. Our knowledge of the potential biological implication of these structures enabled us to probe the compounds as prospective CYP3A4 inhibitors. This approach mimics current trends in pharmaceutical design and biomedicine by incorporating potentially active molecules into various media to predict their biological efficacies. The simulations show appreciable binding of compounds 1 and 2 to CYP3A4 with average interaction energies of -97 and -87 kcal/mol, respectively. The protein attains at least five conformational states in the three studied models using a Gaussian Mixture Model-based clustering and free energy prediction. Electric field analysis shows the crucial residues to substrate binding at the active site, enabling CYP3A4 structure to function prediction. The predicted inhibition with these Ni2+ and Cu2+ complexes indicates that CYP3A4 overexpression in a diseased state like cancer would reduce, thereby increasing the chemotherapeutic compounds' shelf-lives for adsorption. This multidimensional study addresses various aspects of molecular metal electronics, including their application as substrate-mimicking inhibitors. The outcome would enable further research on bio-metal compounds of critical potential.

2.
Mol Divers ; 26(5): 2761-2774, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35067751

RESUMO

Optimization and re-optimization of bioactive molecules using in silico methods have found application in the design of more active ones. Herein, we applied a pharmacophore modeling approach to screen potent dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) aimed at Alzheimer's disease (AD) treatment. The investigation entails molecular dynamics simulation, docking, pharmacophore modeling, drug-like screening, and binding energy analysis. We prepared a pharmacophore model from approved inhibitors of AChE and BuChE to predict the crucial moieties required for optimum molecular interaction with these proteins. The obtained pharmacophore model, used for database screening via some critical criteria, showed 229 hit molecules. Further analyses showed 42 likely dual inhibitors of AChE/BuChE with drug-like and pharmacokinetics properties the same as the approved cholinesterase inhibitors. Finally, we identified 14 dual molecules with improved potentials over the existing inhibitors and simulated ZINC92385797 bound to human AChE and BuChE structure after noticing that these 14 molecules are similar. The selected compound maintained relative stability at the active sites of both proteins over 120 ns simulation. Our integrated protocols showed the pertinent recipes of anti-AD drug design through the in silico pipeline.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
3.
J Biomol Struct Dyn ; 40(7): 2978-2990, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33155869

RESUMO

The growing occurrence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb) strains underscores an urgent need for new antibiotics. The development of more bioactive antibiotics against drug-resistant organisms with a different mode of action could be a game-changer for the cure and eradication of tuberculosis (TB). Pantothenate Kinase (PanK) and CTP synthetase (PyrG) are both essential for RNA, DNA, and Lipids biosynthesis pathways. Given the extensive knowledge on these biosynthesis pathways inhibition of Mtb growth and survival, these enzymes present a fascinating opportunity for anti-mycobacterial drug discovery. Recently, it was experimentally established that the active metabolite 11426026 of compound 7947882 (a prodrug activated by EthA monooxygenase, 5-methyl-N-(4-nitrophenyl) thiophene-2-carboxamide) inhibits the activities of PyrG and PanK to indicate novel multitarget therapy aimed at discontinuing Mtb growth. However, the molecular mechanisms of their selective inhibition remain subtle. In this work, molecular dynamics simulations were employed to investigate the inhibitory mechanism as well as the selectivity impact of the active metabolite inhibitor of these enzymes. Computational modeling of the studied protein-ligand systems reveals that the active metabolite can potentially inhibit both PanK and PyrG, thereby creating a pathway as a double target approach in tuberculosis treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Humanos , Mycobacterium tuberculosis/genética , Fosfotransferases (Aceptor do Grupo Álcool) , Tuberculose/tratamento farmacológico
4.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948055

RESUMO

Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are laborious and time-consuming. The computational techniques in drug design have been improved with a new generation of software used to develop and optimize active compounds that can be used in future chemotherapeutic development to combat global tuberculosis resistance. This review provides an overview of the evolution of tuberculosis resistance, existing drug management, and the design of new anti-tuberculosis drugs developed based on the contributions of computational techniques. Also, we show an appraisal of available software and databases on computational drug design with an insight into the application of this software and databases in the development of anti-tubercular drugs. The review features a perspective involving machine learning, artificial intelligence, quantum computing, and CRISPR combination with available computational techniques as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.


Assuntos
Antituberculosos/química , Desenho de Fármacos/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Inteligência Artificial , Humanos , Estrutura Molecular , Teoria Quântica , Software , Relação Estrutura-Atividade
5.
Chem Biodivers ; 18(11): e2100361, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34547176

RESUMO

Rational modification of known drug candidates to design more potent ones using computational methods has found application in drug design, development, and discovery. Herein, we integrate computational and theoretical methodologies to unveil rivastigmine derivatives as dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) for Alzheimer's disease (AD) management. The investigation entails pharmacokinetics screening, density functional theory (DFT) mechanistic study, molecular docking, and molecular dynamics (MD) simulation. We designed over 20 rivastigmine substituents, subject them to some analyses, and identified RL2 with an appreciable blood-brain barrier score and no permeability glycoprotein binding. The compound shows higher acylation energy and a favored binding affinity to the cholinesterase enzymes. RL2 interacts with the AChE and BuChE active sites showing values of -41.1/-39.5 kcal mol-1 while rivastigmine binds with -32.7/-30.7 kcal mol-1 for these enzymes. The study revealed RL2 (4-fluorophenyl rivastigmine) as a potential dual inhibitor for AChE and BuChE towards Alzheimer's disorder management.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Rivastigmina/farmacologia , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Teoria da Densidade Funcional , Humanos , Modelos Moleculares , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Rivastigmina/síntese química , Rivastigmina/química
6.
J Biomol Struct Dyn ; 39(11): 3825-3841, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33030113

RESUMO

The identification of dual inhibitors targeting the active sites of the cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), have lately surfaced as a multi-approach towards Alzheimer treatment. More recently, a novel series of 4-N-phenylaminoquinolines was synthesized and evaluated against AChE and BuChE in which one of the compounds displayed appreciable inhibition compared to the standard compound, galantamine. To provide a clearer picture of the inhibition mechanism of this potent compound at the molecular level, computational biomolecular modeling was carried out. The investigation was initiated with the exploration of the chemical properties of the identified compound 11 b and reference drug, galantamine. Density functional theory (DFT) calculations reveal some conceptual parameters that provide information on the stability and reactivity of the compounds as potential inhibitors. To unveil the binding mechanism, energetics and enzyme-ligand interactions, molecular dynamics (MD) simulations of six different systems were executed over a period. Calculated binding free energy values are in the same order with experimental IC50 data. Identification of the main residues driving optimum binding of the active compound 11 b to the binding region of both AChE and BuChE showed Trp81 and Trp110 as the most important, respectively. It was proposed that the studied compound could serve as a dual inhibitor for AChE and BuChE, therefore, would potentially be a promising moiety in a multi-target approach for the treatment of Alzheimer's disorder.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...