Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1352717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605986

RESUMO

This study developed a new burn wound dressing based on core-shell nanofibers that co-deliver antibiotic and antioxidant drugs. For this purpose, poly(ethylene oxide) (PEO)-chitosan (CS)/poly(D,L-lactide-co-glycolide) (PLGA) core-shell nanofibers were fabricated through co-axial electrospinning technique. Antibiotic levofloxacin (LEV) and antioxidant quercetin (QS) were incorporated into the core and shell parts of PEO-CS/PLGA nanofibers, respectively. The drugs could bond to the polymer chains through hydrogen bonding, leading to their steady release for 168 h. An in vitro drug release study showed a burst effect followed by sustained release of LEV and QS from the nanofibers due to the Fickian diffusion. The NIH 3T3 fibroblast cell viability of the drug loaded core-shell nanofibers was comparable to that in the control (tissue culture polystyrene) implying biocompatibility of the nanofibers and their cell supportive role. However, there was no significant difference in cell viability between the drug loaded and drug free core-shell nanofibers. According to in vivo experiments, PEO-CS-LEV/PLGA-QS core-shell nanofibers could accelerate the healing process of a burn wound compared to a sterile gauze. Thanks to the synergistic therapeutic effect of LEV and QS, a significantly higher wound closure rate was recorded for the drug loaded core-shell nanofibrous dressing than the drug free nanofibers and control. Conclusively, PEO-CS-LEV/PLGA-QS core-shell nanofibers were shown to be a promising wound healing material that could drive the healing cascade through local co-delivery of LEV and QS to burn wounds.

2.
Int J Biol Macromol ; 249: 126705, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37673162

RESUMO

A pH-sensitive bilayer electrospun nanofibrous mat containing both antibiotic (gentamicin sulfate, GEN) and non-steroidal anti-inflammatory (diclofenac sodium, DIC) drugs was fabricated for burn wound dressing by electrospinning technique, in which ethyl cellulose (EC) and ethyl cellulose/Eudragit S-100 (EC/ES-100) formed the top and bottom layers, respectively. The fabricated pH-sensitive bilayer electrospun nanofibrous mats were characterized from aspects of both structure and efficiency. Physicochemical properties were investigated via SEM, FTIR, and TGA. The swelling ratio and in vitro drug release of the fabricated nanofibrous mats were studied in different pHs. MTT was applied to assess the safety of the fiber mats. Finally, the in vivo efficiency of the designed pH-sensitive bilayer electrospun nanofibrous mats was examined on the male Wistar rats. Based on the histological analysis and wound healing test (in vivo animal experiments), the (ES100/EC-DIC/GEN)-(EC) pH-sensitive bilayer nanofibrous mat displayed faster wound healing than other bilayer nanofibrous mat. As a result, (ES100/EC-DIC/GEN)-(EC) bilayer nanofibrous mat with pH-responsion could accelerate the burn wound healing process via decreasing the adverse effects of GEN and DIC as topical antimicrobial and anti-inflammatory agents, receptively.


Assuntos
Nanofibras , Masculino , Ratos , Animais , Ratos Wistar , Celulose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...