Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 5984-5992, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728101

RESUMO

Addressing the need for modulated spin configurations is crucial, as they serve as the foundational building blocks for next-generation spintronics, particularly in atomically thin structures and at room temperature. In this work, we realize intrinsic ferromagnetism in monolayer flakes and tunable ferro-/antiferromagnetism in (Fe0.56Co0.44)5GeTe2 antiferromagnets. Remarkably, the ferromagnetic ordering (≥1 L) and antiferromagnetic ordering (≥4 L) remain discernible up to room temperature. The TC (∼310 K) of the monolayer flakes sets a record high for known exfoliated monolayer van der Waals magnets. Within the framework of A-type antiferromagnetism, a notable odd-even layer-number effect at elevated temperatures (T = 150 K) is observed. Of particular interest is the strong ferromagnetic order in even-layer flakes at low temperatures. The intricate interplay among magnetic field strength, layer number, and temperature gives rise to a diverse array of phenomena, holding promise not only for new physics but also for practical applications.

2.
Nature ; 627(8002): 67-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448698

RESUMO

Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description. A common feature is strong interactions between electrons relative to their kinetic energies. One route to this regime is special lattices to reduce the electron kinetic energies. Twisted bilayer graphene1-4 is an example, and trihexagonal tiling lattices (triangular 'kagome'), with all corner sites removed on a 2 × 2 superlattice, can also host narrow electron bands5 for which interaction effects would be enhanced. Here we describe spectroscopy revealing non-Fermi-liquid behaviour for the ferromagnetic kagome metal Fe3Sn2 (ref. 6). We discover three C3-symmetric electron pockets at the Brillouin zone centre, two of which are expected from density functional theory. The third and most sharply defined band emerges at low temperatures and binding energies by means of fractionalization of one of the other two, most likely on the account of enhanced electron-electron interactions owing to a flat band predicted to lie just above the Fermi level. Our discovery opens the topic of how such many-body physics involving flat bands7,8 could differ depending on whether they arise from lattice geometry or from strongly localized atomic orbitals9,10.

3.
Rev Sci Instrum ; 91(3): 033905, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259998

RESUMO

Two dimensional (2D) peak finding is a common practice in data analysis for physics experiments, which is typically achieved by computing the local derivatives. However, this method is inherently unstable when the local landscape is complicated or the signal-to-noise ratio of the data is low. In this work, we propose a new method in which the peak tracking task is formalized as an inverse problem, which thus can be solved with a convolutional neural network (CNN). In addition, we show that the underlying physics principle of the experiments can be used to generate the training data. By generalizing the trained neural network on real experimental data, we show that the CNN method can achieve comparable or better results than traditional derivative based methods. This approach can be further generalized in different physics experiments when the physical process is known.

4.
Sci Adv ; 4(9): eaat8355, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30225369

RESUMO

Semiconductors are essential materials that affect our everyday life in the modern world. Two-dimensional semiconductors with high mobility and moderate bandgap are particularly attractive today because of their potential application in fast, low-power, and ultrasmall/thin electronic devices. We investigate the electronic structures of a new layered air-stable oxide semiconductor, Bi2O2Se, with ultrahigh mobility (~2.8 × 105 cm2/V⋅s at 2.0 K) and moderate bandgap (~0.8 eV). Combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we mapped out the complete band structures of Bi2O2Se with key parameters (for example, effective mass, Fermi velocity, and bandgap). The unusual spatial uniformity of the bandgap without undesired in-gap states on the sample surface with up to ~50% defects makes Bi2O2Se an ideal semiconductor for future electronic applications. In addition, the structural compatibility between Bi2O2Se and interesting perovskite oxides (for example, cuprate high-transition temperature superconductors and commonly used substrate material SrTiO3) further makes heterostructures between Bi2O2Se and these oxides possible platforms for realizing novel physical phenomena, such as topological superconductivity, Josephson junction field-effect transistor, new superconducting optoelectronics, and novel lasers.

5.
Adv Mater ; 29(27)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28481053

RESUMO

Graphene has demonstrated great potential in new-generation electronic applications due to its unique electronic properties such as large carrier Fermi velocity, ultrahigh carrier mobility, and high material stability. Interestingly, the electronic structures can be further engineered in multilayer graphene by the introduction of a twist angle between different layers to create van Hove singularities (vHSs) at adjustable binding energy. In this work, using angle-resolved photoemission spectroscopy with sub-micrometer spatial resolution, the band structures and their evolution are systematically studied with twist angle in bilayer and trilayer graphene sheets. A doping effect is directly observed in graphene multilayer system as well as vHSs in bilayer graphene over a wide range of twist angles (from 5° to 31°) with wide tunable energy range over 2 eV. In addition, the formation of multiple vHSs (at different binding energies) is also observed in trilayer graphene. The large tuning range of vHS binding energy in twisted multilayer graphene provides a promising material base for optoelectrical applications with broadband wavelength selectivity from the infrared to the ultraviolet regime, as demonstrated by an example application of wavelength selective photodetector.

6.
ACS Nano ; 5(5): 3660-9, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21449578

RESUMO

Intrinsic defects such as vacancies, interstitials, and anti-sites often introduce rich luminescent properties in II-VI semiconductor nanomaterials. A clear understanding of the dynamics of the defect-related excitons is particularly important for the design and optimization of nanoscale optoelectronic devices. In this paper, low-temperature steady-state and time-resolved photoluminescence (PL) spectroscopies have been carried out to investigate the emission of cadmium sulfide (CdS) nanobelts that originates from the radiative recombination of excitons bound to neutral donors (I(2)) and the spatially localized donor-acceptor pairs (DAP), in which the assignment is supported by first principle calculations. Our results verify that the shallow donors in CdS are contributed by sulfur vacancies while the acceptors are contributed by cadmium vacancies. At high excitation intensities, the DAP emission saturates and the PL is dominated by I(2) emission. Beyond a threshold power of approximately 5 µW, amplified spontaneous emission (ASE) of I(2) occurs. Further analysis shows that these intrinsic defects created long-lived (spin triplet) DAP trap states due to spin-polarized Cd vacancies which become saturated at intense carrier excitations.


Assuntos
Compostos de Cádmio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Selênio/química , Transporte de Elétrons , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...