Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 8(5)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35772389

RESUMO

Electro-spinnable polymeric materials can easily form two-dimensional (2D) nanofibrous scaffolds improving biochemical functionalities specially in the area of skin wound healing and nanomedicine, but it has been hard to achieve this on a highly mechanically stable biopolymer, Poly ether ether ketone (PEEK), due to its intrinsic hydrophobicity and chemical inertness. Herein, we demonstrated a novel nanomedicine healing system consisting of sulphonated poly ether ether ketone combined withresveratrol(SPEEK + RSV), which could act as an effective 2D nano bio-materialin vitroandin vivo, without observable cytotoxicity. The fabricated nanocomposites exhibited enriched skin cell proliferation and adhesion as confirmed from the results of MTT, cell adhesion and live-dead assay. Results of SEM analysis showed a uniform nano-sized distribution with adequate pore size and porosity % facilitating a desired breathable environment at the wound site. The results of FT-IR, tensile studies and TGA analyses confirmed the presence of appropriate bonds and improved mechanical stability of theRSVincorporated nanofibrous scaffold. Results of anti-microbial analysis portrayed good potentiality of the fabricated nanofibers in treating wounds colonized with bacterial infections. Controlled drug release of resveratrol established the bio-compatibility of the nanofibers in skin wound regeneration.In vivoanalysis assessed in female Wistar rats enabled complete wound closure with 100% wound contraction within 16 days. Results of histopathology analysis through H-E and MT staining presented the re-surfing of the wound environment with regeneration of epithelium, granulation tissue and collagen. Thus, the fabricated 2D nanofibrous scaffold incorporated with pharmaceutical RSV bio-medicine perceptively mimicked skin ECM convincingly aiding the progression of skin wound regeneration mechanism.


Assuntos
Nanofibras , Animais , Éteres , Feminino , Cetonas , Nanofibras/química , Poliésteres/química , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais/química
2.
J Biomater Sci Polym Ed ; 33(8): 947-975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34985405

RESUMO

Bone defect restoration remains challenging in orthopedic medical practices. In this study an attempt is carried out to probe the use of new biomimetic SPEEK (sulfonated polyether ether ketone) based nanofibrous scaffold to deliver amine functionalized hydroxyapatite nanoparticles loaded resveratrol for its potent functionality in osteogenic differentiation. SPEEK polymer with reactive functional group SO3H was synthesized through process of sulphonation reaction. Amine functionalized nanoparticles with protonated amino groups revamp the molecular interaction by the formation of hydrogen bonds that in turn intensify the bioactivity of the nanofibrous scaffold. Osteoconductive functionalized nanohydroxyapatite enhances the cell proliferation and osteogenicity with improved cell attachment and spreading. The results of FT-IR, XRD, Carbon-Silica NMR and EDX analysis confirmed the amine functionalization of the hydroxyapatite nanoparticles. Surface morphological analysis of the fabricated nanofibers through SEM and AFM analysis shows vastly interconnected porous structure that mimics the bone extracellular matrix, which enhances the cell compatibility. Cell adhesion and live dead assay of the nanoscaffolds express less cytotoxicity. Mineralization and alkaline phosphatase assay establish the osteogenic differentiation of the nanofibrous scaffold. The in vitro biocompatibility studies reveal that the fabricated scaffold was osteo-compatible with MG63 cell lines. Hemocompatibility study further proved that the designed biomimetic nanofibrous scaffold was highly suitable for bone tissue engineering. The results of in vivo analysis in zebrafish model for the fabricated nanofibers demonstrated significant increase in the caudal fin regeneration indicating mineralization of osteoblast. Thus, the commending results obtained instigate the potentiality of the composite nanofibrous scaffold as an effective biomimetic substrate for bone tissue regeneration.


Assuntos
Nanofibras , Aminas , Animais , Biomimética , Regeneração Óssea , Proliferação de Células , Durapatita/química , Éteres , Cetonas , Nanofibras/química , Osteogênese , Polietilenoglicóis , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Peixe-Zebra
3.
J Mech Behav Biomed Mater ; 123: 104796, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34464901

RESUMO

Periodontal disease disturbs the supportive tissues around the teeth such as connective tissue, gingival tissue, periodontal ligaments and alveolar bone. Previously, treatment of periodontitis was embattled by repopulating the affected site with cells that has capacity to regenerate damaged tissue by endorsing the perception of guided tissue regeneration but it entails additional surgery owing to non-biodegradability. Biodegradable polymeric nanofibrous scaffold imitating extracellular matrix (ECM) delivering functionalized nanoparticles loaded with therapeutic drug have the ability to support cellular functions thereby enhancing regeneration. Present study explores novel amine functionalized zirconia nanoparticle loaded curcumin incorporated SPEEK nanofibrous scaffolds to address periodontal regeneration. Zirconia - crown of dental therapeutics, its amine functionalization further enhanced the strength and cyto-compatibility. Carbon-Silica NMR (59.9 and 69.8 ppm), FT-IR (3426 cm-1), EDAX and XRD (28.9°, 31.6° and 38.2° pertaining to [-1 1 1], [1 1 1] and [1 2 0] planes) analysis confirmed the effective functionalization of the zirconia nanoparticle with the amine group. Electrospinning was carried out at a voltage of 20 kV and flow rate of 0.05 ml/h. Fabricated nanofibers were highly dense, porous with interconnected fibrous structures that bio-mimic ECM. They exhibited an average diameter of 187 ± 2 nm (SPEEK), 192 ± 2 nm (SPEEK + NH2-ZrO2), and 256 ± 17 nm (SPEEK + NH2-ZrO2+Cur). Extensively discovered anti-bacterial traits of curcumin supplemented the advantage for the treatment of periodontitis. Incorporated materials improve the physico-chemical, mechanical and biological characteristics of nanofibers. FT-IR, EDAX and XRD analysis of the fabricated nanofibrous scaffold demonstrated the effective incorporation of aminated zirconia loaded curcumin. Results of cyto-compatibility analysis of SPEEK + NH2-ZrO2+Cur nanofibrous scaffold depicted a cell viability of 100 ± 1.62%. Results of anti-bacterial assay with zone of inhibition was 6.5 ± 0.5 mm (SPEEK), 7.5 ± 1 mm (SPEEK + NH2-ZrO2), and 8 ± 1 mm (SPEEK + NH2-ZrO2+Cur). Thus, the fabricated bio-material is cyto-compatible, non-toxic and effective against pathogens exploiting higher potential for periodontal regeneration applications.


Assuntos
Curcumina , Nanofibras , Curcumina/farmacologia , Poliésteres , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Alicerces Teciduais , Zircônio
4.
Biomed Mater ; 16(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33725680

RESUMO

Wound healing is an urgent problem that impacts quality of life, and the need for biomaterials suitable for the treatment of skin wound healing disease is increasing annually. Innovative biomaterials and treatments for skin abrasions are being relentlessly researched and established in order to improve treatment efficacy. Here, we describe a novel electrospun polymeric nanofibrous scaffold enriched with pharmaceutical bioactive materials extracted fromMorinda citrifolia(MC), which demonstrated efficient skin wound healing therapy due to its excellent human skin keratinocyte proliferation and adhesion inin vitroanalysis. Surface morphological analysis was used to reveal the nano-architectural structure of the electrospun scaffolds. The fabricated nanofibers displayed good antibacterial efficacy by creating an inhibitory zone for the pathogenic microbes studied. MC supported active healing due to the presence of pharmaceuticals associated with wound healing, as revealed by the results of gas chromatography-mass spectrometry and the prediction of activity spectra for substances (PASS) analysis. Since MC is a multi-potential therapeutic herbal plant, it was found that the linoleic acid, olelic acid, and diethyl phthalate present in the extract supported the wound healing proteins glycogen-synthase-kinase-3-ß-protein and Protein Data Bank-1Q5K with binding energies of -4.6, -5.2, and -5.9 kcal mol-1, as established by the results ofin silicoanalysis. Thus, by being hydrophilic in nature, targeting wound proteins, increasing the proliferation and adhesion of keratinocytes and combating pathogens, the nanofibrous scaffolds endowed with MC extract proved to be an effective therapeutic material for skin wound dressing applications.


Assuntos
Morinda/química , Nanofibras/química , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Técnicas Eletroquímicas , Células HaCaT , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Álcool de Polivinil/química
5.
Mater Sci Eng C Mater Biol Appl ; 115: 111150, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600734

RESUMO

Regeneration of skin wound is a challenging process since functional and architectural restoration of the damaged skin tissue is an arduous task. The use of springing up biomaterials with nano-topographic and bio-mimicking characteristics resembling natural skin's extra cellular matrix (ECM) would be a favorable approach to regenerate such an injured skin tissue. In this study an attempt has been carried out to design and develop sulphonated polyether ether ketone (SPEEK) nanofibrous scaffold to explore its role on skin cell proliferation potential. 2 h-SPEEK portrayed the highest proliferative potential for HaCaT keratinocytes and fibroblasts. It was aimed for the tailored release of bio-actives from the spatiotemporally designed Aloe vera incorporated 2 h-SPEEK nanoscaffold to accelerate the skin wound regeneration. FTIR, EDX and XRD analyses revealed the effective incorporation of Aloe vera in the electrospun nanofibers. SEM analysis revealed the nano-topographical morphology with highly porous, dense and interconnected fibrous structures mimicking the skin ECM. The regulated delivery of Aloe vera demonstrated the biocompatibility of the nanofibrous scaffold in skin keratinocytes (HaCaT) and fibroblasts (3T3) cells through in vitro analysis proving its non-toxic properties. Further, the fabricated nanoscaffolds exhibited excellent anti-microbial efficacy towards the tested human skin pathogenic microbes. The results of in vivo studies in Wistar rat model exhibited scar-less wound healing with complete wound closure. Thus, this nanofiber based drug delivery system implicitly acts as a skin like ECM, bio-mimicking the topographical and chemical cues of the natural skin tissues paving way for a complete regeneration and integration of the injured area strengthening the functional restoration of insulted cells around the wound area.


Assuntos
Aloe/química , Materiais Biomiméticos/farmacologia , Cetonas/farmacologia , Polietilenoglicóis/farmacologia , Pele/citologia , Cicatrização/efeitos dos fármacos , Animais , Benzofenonas , Materiais Biomiméticos/química , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Cetonas/química , Camundongos , Nanoestruturas , Polietilenoglicóis/química , Polímeros , Ratos , Pele/efeitos dos fármacos , Células Swiss 3T3 , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...