Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666320

RESUMO

Mixotrophy, the concurrent use of inorganic and organic carbon in the presence of light for microalgal growth, holds ecological and industrial significance. However, it is poorly explored in diatoms, especially in ecologically relevant species like Skeletonema marinoi. This study strategically employed mixotrophic metabolism to optimize the growth of a strain of Skeletonema marinoi (Sm142), which was found potentially important for biomass production on the west coast of Sweden in winter conditions. The aim of this study was to discern the most effective organic carbon sources by closely monitoring microalgal growth through the assessment of optical density, chlorophyll a fluorescence, and biomass concentration. The impact of various carbon sources on the physiology of Sm142 was investigated using photosynthetic and respiratory parameters. The findings revealed that glycerol exhibited the highest potential for enhancing the biomass concentration of Sm142 in a multi-cultivator under the specified experimental conditions, thanks to the increase in respiration activity. Furthermore, the stimulatory effect of glycerol was confirmed at a larger scale using environmental photobioreactors simulating the winter conditions on the west coast of Sweden; it was found comparable to the stimulation by CO2-enriched air versus normal air. These results were the first evidence of the ability of Skeletonema marinoi to perform mixotrophic metabolism during the winter and could explain the ecological success of this diatom on the Swedish west coast. These findings also highlight the importance of both organic and inorganic carbon sources for enhancing biomass productivity in harsh winter conditions.


Assuntos
Biomassa , Diatomáceas , Fotossíntese , Estações do Ano , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia , Diatomáceas/metabolismo , Fotossíntese/fisiologia , Suécia , Carbono/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Microalgas/fisiologia , Clorofila A/metabolismo , Clorofila/metabolismo , Glicerol/metabolismo
2.
Mar Drugs ; 20(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35877717

RESUMO

A local strain of Nannochloropsis granulata (Ng) has been reported as the most productive microalgal strain in terms of both biomass yield and lipid content when cultivated in photobioreactors that simulate the light and temperature conditions during the summer on the west coast of Sweden. To further increase the biomass and the biotechnological potential of this strain in these conditions, mixotrophic growth (i.e., the simultaneous use of photosynthesis and respiration) with glycerol as an external carbon source was investigated in this study and compared with phototrophic growth that made use of air enriched with 1-2% CO2. The addition of either glycerol or CO2-enriched air stimulated the growth of Ng and theproduction of high-value long-chain polyunsaturated fatty acids (EPA) as well as the carotenoid canthaxanthin. Bioassays in human prostate cell lines indicated the highest antitumoral activity for Ng extracts and fractions from mixotrophic conditions. Metabolomics detected betaine lipids specifically in the bioactive fractions, suggesting their involvement in the observed antitumoral effect. Genes related to autophagy were found to be upregulated by the most bioactive fraction, suggesting a possible therapeutic target against prostate cancer progression. Taken together, our results suggest that the local Ng strain can be cultivated mixotrophically in summer conditions on the west coast of Sweden for the production of high-value biomass containing antiproliferative compounds, carotenoids, and EPA.


Assuntos
Microalgas , Estramenópilas , Biomassa , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Glicerol , Humanos , Microalgas/metabolismo , Estramenópilas/metabolismo , Suécia
3.
Physiol Plant ; 173(2): 543-554, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33826748

RESUMO

At Nordic latitudes, year-round outdoor cultivation of microalgae is debatable due to seasonal variations in productivity. Shall the same species/strains be used throughout the year, or shall seasonal-adapted ones be used? To elucidate this, a laboratory study was performed where two out of 167 marine microalgal strains were selected for intended cultivation at the west coast of Sweden. The two local strains belong to Nannochloropsis granulata (Ng) and Skeletonema marinoi (Sm142). They were cultivated in photobioreactors and compared in conditions simulating variations in light and temperature of a year divided into three growth seasons (spring, summer and winter). The strains grew similarly well in summer (and also in spring), but Ng produced more biomass (0.225 vs. 0.066 g DW L-1 day-1 ) which was more energy rich (25.0 vs. 16.6 MJ kg-1 DW). In winter, Sm142 grew faster and produced more biomass (0.017 vs. 0.007 g DW L-1 day-1 ), having similar energy to the other seasons. The higher energy of the Ng biomass is attributed to a higher lipid content (40 vs. 16% in summer). The biomass of both strains was richest in proteins (65%) in spring. In all seasons, Sm142 was more effective in removing phosphorus from the cultivation medium (6.58 vs. 4.14 mg L-1 day-1 in summer), whereas Ng was more effective in removing nitrogen only in summer (55.0 vs. 30.8 mg L-1 day-1 ). Our results suggest that, depending on the purpose, either the same or different local species can be cultivated, and are relevant when designing outdoor studies.


Assuntos
Microalgas , Biomassa , Laboratórios , Estações do Ano , Suécia , Temperatura
4.
Physiol Plant ; 166(1): 438-450, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30809828

RESUMO

Climate change, energy use and food security are the main challenges that our society is facing nowadays. Biofuels and feedstock from microalgae can be part of the solution if high and continuous production is to be ensured. This could be attained in year-round, low cost, outdoor cultivation systems using strains that are not only champion producers of desired compounds but also have robust growth in a dynamic climate. Using microalgae strains adapted to the local conditions may be advantageous particularly in Nordic countries. Here, we review the current status of laboratory and outdoor-scale cultivation in Nordic conditions of local strains for biofuel, high-value compounds and water remediation. Strains suitable for biotechnological purposes were identified from the large and diverse pool represented by saline (NE Atlantic Ocean), brackish (Baltic Sea) and fresh water (lakes and rivers) sources. Energy-efficient annual rotation for cultivation of strains well adapted to Nordic climate has the potential to provide high biomass yields for biotechnological purposes.


Assuntos
Biotecnologia/métodos , Microalgas/metabolismo , Biocombustíveis , Biomassa , Países Escandinavos e Nórdicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...