Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NAR Cancer ; 5(1): zcac045, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36644397

RESUMO

ERCC1/XPF is a heterodimeric DNA endonuclease critical for repair of certain chemotherapeutic agents. We recently identified that ERCC1- and p53-deficient lung cancer cells are tolerant to platinum-based chemotherapy. ATR inhibition synergistically re-stored platinum sensitivity to platinum tolerant ERCC1-deficient cells. Mechanistically we show this effect is reliant upon several functions of ATR including replication fork protection and altered cell cycle checkpoints. Utilizing an inhibitor of replication protein A (RPA), we further demonstrate that replication fork protection and RPA availability are critical for platinum-based drug tolerance. Dual treatment led to increased formation of DNA double strand breaks and was associated with chromosome pulverization. Combination treatment was also associated with increased micronuclei formation which were capable of being bound by the innate immunomodulatory factor, cGAS, suggesting that combination platinum and ATR inhibition may also enhance response to immunotherapy in ERCC1-deficient tumors. In vivo studies demonstrate a significant effect on tumor growth delay with combination therapy compared with single agent treatment. Results of this study have led to the identification of a feasible therapeutic strategy combining ATR inhibition with platinum and potentially immune checkpoint blockade inhibitors to overcome platinum tolerance in ERCC1-deficient, p53-mutant lung cancers.

2.
Front Oncol ; 12: 826655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251993

RESUMO

Replication protein A (RPA) plays essential roles in DNA replication, repair, recombination, and the DNA damage response (DDR). Retrospective analysis of lung cancer patient data demonstrates high RPA expression as a negative prognostic biomarker for overall survival in smoking-related lung cancers. Similarly, relative expression of RPA is a predictive marker for response to chemotherapy. These observations are consistent with the increase in RPA expression serving as an adaptive mechanism that allows tolerance of the genotoxic stress resulting from carcinogen exposure. We have developed second-generation RPA inhibitors (RPAis) that block the RPA-DNA interaction and optimized formulation for in vivo analyses. Data demonstrate that unlike first-generation RPAis, second-generation molecules show increased cellular permeability and induce cell death via apoptosis. Second-generation RPAis elicit single-agent in vitro anticancer activity across a broad spectrum of cancers, and the cellular response suggests existence of a threshold before chemical RPA exhaustion induces cell death. Chemical RPA inhibition potentiates the anticancer activity of a series of DDR inhibitors and traditional DNA-damaging cancer therapeutics. Consistent with chemical RPA exhaustion, we demonstrate that the effects of RPAi on replication fork dynamics are similar to other known DDR inhibitors. An optimized formulation of RPAi NERx 329 was developed that resulted in single-agent anticancer activity in two non-small cell lung cancer models. These data demonstrate a unique mechanism of action of RPAis eliciting a state of chemical RPA exhaustion and suggest they will provide an effective therapeutic option for difficult-to-treat lung cancers.

3.
NAR Cancer ; 2(4): zcaa033, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33196045

RESUMO

Identifying the mechanisms mediating cisplatin response is essential for improving patient response. Previous research has identified base excision repair (BER) and mismatch repair (MMR) activity in sensitizing cells to cisplatin. Cisplatin forms DNA adducts including interstrand cross-links (ICLs) that distort the DNA helix, forcing adjacent cytosines to become extrahelical. These extrahelical cytosines provide a substrate for cytosine deaminases. Herein, we show that APOBEC3 (A3) enzymes are capable of deaminating the extrahelical cytosines to uracils and sensitizing breast cancer cells to cisplatin. Knockdown of A3s results in resistance to cisplatin and induction of A3 expression in cells with low A3 expression increases sensitivity to cisplatin. We show that the actions of A3s are epistatic with BER and MMR. We propose that A3-induced cytosine deamination to uracil at cisplatin ICLs results in repair of uracils by BER, which blocks ICL DNA repair and enhances cisplatin efficacy and improves breast cancer outcomes.

4.
DNA Repair (Amst) ; 87: 102802, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31981740

RESUMO

Human papillomavirus (HPV) is associated with the development of head and neck squamous cell carcinomas (HNSC). Cisplatin is used to treat HNSC and induces DNA adducts including interstrand crosslinks (ICLs). Previous reports have shown that HPV positive HNSC patients respond better to cisplatin therapy. Our previous reports highlight that loss of base excision repair (BER) and mismatch repair (MMR) results in cisplatin resistance. Of importance, uracil DNA glycosylase (UNG) is required to initiate the BER response to cisplatin treatment and maintain drug sensitivity. These previous results highlight that specific cytidine deaminases could play an important role in the cisplatin response by activating the BER pathway to mediate drug sensitivity. The APOBEC3 (A3) family of cytidine deaminases are enzymes that restrict HPV as part of the immune defense to viral infection. In this study, the Cancer Genome Atlas (TCGA) HNSC data were used to assess the association between the expression of the seven proteins in the A3 cytidine deaminase family, HPV-status and survival outcomes. Higher A3 G expression in HPV-positive tumors corresponds with better overall survival (OS) (HR 0.33, 95 % CI 0.11-0.93, p = 0.04). FaDu and Scc-25 HNSC cell lines were used to assess alterations in A3, BER and MMR expression in response to cisplatin. We demonstrate that A3, Polß, and MSH6 knockdown in HNSC cells results in resistance to cisplatin and carboplatin as well as an increase in the rate of ICL removal in FaDu and Scc-25 HNSC cells. Our results suggest that A3s activate BER in HNSC, mediate repair of cisplatin ICLs and thereby, sensitize cells to cisplatin which likely contributes to the improved patient responses observed in HPV infected patients.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/virologia , Cisplatino/uso terapêutico , Citidina Desaminase/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/virologia , Papillomaviridae , Desaminases APOBEC , Antineoplásicos/farmacologia , Carboplatina/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Humanos , Oxaliplatina/farmacologia
5.
Recent Pat Anticancer Drug Discov ; 14(2): 113-132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31084595

RESUMO

BACKGROUND: Despite years of success of most anti-cancer drugs, one of the major clinical problems is inherent and acquired resistance to these drugs. Overcoming the drug resistance or developing new drugs would offer promising strategies in cancer treatment. Disulfiram, a drug currently used in the treatment of chronic alcoholism, has been found to have anti-cancer activity. OBJECTIVE: To summarize the anti-cancer effects of Disulfiram through a thorough patent review. METHODS: This article reviews molecular mechanisms and recent patents of Disulfiram in cancer therapy. RESULTS: Several anti-cancer mechanisms of Disulfiram have been proposed, including triggering oxidative stress by the generation of reactive oxygen species, inhibition of the superoxide dismutase activity, suppression of the ubiquitin-proteasome system, and activation of the mitogen-activated protein kinase pathway. In addition, Disulfiram can reverse the resistance to chemotherapeutic drugs by inhibiting the P-glycoprotein multidrug efflux pump and suppressing the activation of NF-kB, both of which play an important role in the development of drug resistance. Furthermore, Disulfiram has been found to reduce angiogenesis because of its metal chelating properties as well as its ability to inactivate Cu/Zn superoxide dismutase and matrix metalloproteinases. Disulfiram has also been shown to inhibit the proteasomes, DNA topoisomerases, DNA methyltransferase, glutathione S-transferase P1, and O6- methylguanine DNA methyltransferase, a DNA repair protein highly expressed in brain tumors. The patents described in this review demonstrate that Disulfiram is useful as an anti-cancer drug. CONCLUSION: For years the FDA-approved, well-tolerated, inexpensive, orally-administered drug Disulfiram was used in the treatment of chronic alcoholism, but it has recently demonstrated anti-cancer effects in a range of solid and hematological malignancies. Its combination with copper at clinically relevant concentrations might overcome the resistance of many anti-cancer drugs in vitro, in vivo, and in patients.


Assuntos
Antineoplásicos/uso terapêutico , Dissulfiram/uso terapêutico , Reposicionamento de Medicamentos , Patentes como Assunto , Animais , Antineoplásicos/economia , Dissulfiram/economia , Reposicionamento de Medicamentos/economia , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/normas , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Espécies Reativas de Oxigênio/metabolismo
6.
J Cell Biochem ; 120(8): 14065-14075, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30963630

RESUMO

The levels of organic pollutants, such as optical brightener (OB) compounds, in the global environment have been increasing in recent years. The toxicological effects and signal transduction systems associated with OB toxicity have not been thoroughly studied. The ubiquitin-proteasome system (UPS) plays a crucial role in regulating multiple essential cellular processes, and proteasome-associated cysteine deubiquitinases (DUBs), ubiquitin C-terminal hydrolase L5 (UCHL5) and USP14, are two major regulators for (de)ubiquitination and stability of many important target proteins. Therefore, potential inhibition of UCHL5 and USP14 activities by some environmental chemicals might cause in vivo toxicity. In the current study we hypothesize that electrophilic OB compounds, such as 4,4'-diamino-2,2'-stilbenedisulfonic acid(DAST), fluorescent brightener 28 (FB-28) and FB-71, can interact with the catalytic triads (CYS, HIS, and ASP) of UCHL5 and USP14 and inhibit their enzymatic activities, leading to cell growth suppression. This hypothesis is supported by our findings presented in this study. Results from in silico computational docking and ubiquitin vinyl sulfone assay confirmed the UCHL5/USP14-inhibitory activities of these OB compounds that have potencies in an order of: FB-71 > FB-28 > DAST. Furthermore, inhibition of these two proteasomal DUBs by OBs resulted in cell growth inhibition and apoptosis induction in two human breast cancer cell models. In addition, we found that OB-mediated DUB inhibition triggers a feedback reaction in which expression of UCHL5 and USP14 proteins is increased to compromise the suppressed activities. Our study suggests that these commonly used OB compounds may target and inhibit proteasomal cysteine DUBs, which should contribute to their toxicological effects in vivo.


Assuntos
Cisteína/metabolismo , Enzimas Desubiquitinantes/metabolismo , Poluentes Ambientais/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Apoptose/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Poluentes Ambientais/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerases/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo
7.
Future Med Chem ; 10(17): 2087-2108, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30066579

RESUMO

The ubiquitin proteasome system has been validated as a target of cancer therapies evident by the US FDA approval of anticancer 20S proteasome inhibitors. Deubiquitinating enzymes (DUBs), an essential component of the ubiquitin proteasome system, regulate cellular processes through the removal of ubiquitin from ubiquitinated-tagged proteins. The deubiquitination process has been linked with cancer and other pathologies. As such, the study of proteasomal DUBs and their inhibitors has garnered interest as a novel strategy to improve current cancer therapies, especially for cancers resistant to 20S proteasome inhibitors. This article reviews proteasomal DUB inhibitors in the context of: discovery through rational design approach, discovery from searching natural products and discovery from repurposing old drugs, and offers a future perspective.


Assuntos
Antineoplásicos/farmacologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Desenho de Fármacos , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Enzimas Desubiquitinantes/metabolismo , Descoberta de Drogas/métodos , Humanos , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/uso terapêutico , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...