Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 93(4): e20200896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705941

RESUMO

The objective of this study were to identify the fatty acid composition for decanoic (C10:0), tridecanoic (C13:0), myristic (C14:0), pentadecanoic (C15:0), palmitic (C16:0), stearic (C18:0), oleic (C18:1n9c), linoleic (C18:2n6c), arachidic (C20:0), arachidonic (C20:4n6), heneicosanoic (C21:0), erucic (C22:1n9) and Cis-4,7,10,13,16,19-docosahexaenoic (C22:6n3) acids by Neocallimastix, Orpinomyces, Caecomyces and Piromyces species of rumen fungus during in vitro culture. Fatty acid (FA) profi le of anaerobic fungi comprises carbon chains of length ranging from 10 to 22 were analyzed as methyl esters. Analysis of fatty acids was performed using Gas Chromatography-Mass Spectrophotometer (GC-MS). FA measures are presented as proportions of relative amounts (% total fatty acid). The highest amounts of fatty acids for all samples were found as myristic (C14:0) acid. The tridecanoic (C13:0) acid represented the second abundant FA in the fungi in all experimental groups. Stearic acid (C18:0) was the third major fatty acid for isolates investigated in the current study. In addition, another fatty acid was palmitic (C16:0) acid with relative amount representing >20 % of total FA in all samples. Pentadecanoic (C15:0) acid could not be found in any other samples except Orpinomyces sp. (GMLF5). It is concluded that biohydrogenation of fatty acid composition by anaerobic gut fungi are very variable.


Assuntos
Neocallimastigales , Neocallimastix , Piromyces , Anaerobiose , Animais , Ácidos Graxos , Fungos
2.
J Mol Microbiol Biotechnol ; 8(2): 111-6, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15925902

RESUMO

An endoglucanase gene was subcloned from anaerobic rumen bacterium Ruminococcus flavefaciens strain 17. To express endoglucanase gene in Escherichia coli and Streptococcus bovis JB1, an endoglucanase gene fragment was inserted into pVA838-based shuttle vectors. Removal of endoglucanase gene promoter and expression of endoglucanase by promoter of S. bovis JB1 alpha-amylase gene (pACMCS) was also achieved. Survival of constructs pVACMCI, pTACMC and pACMCS, which carry endoglucanase gene, and stability of endoglucanase gene in S. bovis JB1, were observed. Maximal endoglucanase activities from S. bovis JB1/pVACMCI were 2- to 3-fold higher than from E. coli/pVACMCI. Specific cell activity of E. coli/pACMCS was found to be approximately 2- to -3 fold higher than the both E. coli/pVACMCI and E. coli/pTACMC. Specific cell activity of S. bovis JB1/pACMCS was also found to be approximately 2-fold higher than the both S. bovis/pVACMCI and S. bovis JB1/pTACMC.


Assuntos
Celulase/genética , Cocos Gram-Positivos/genética , Rúmen/microbiologia , Animais , Clonagem Molecular , Endodesoxirribonucleases/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Cocos Gram-Positivos/enzimologia , Plasmídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...