Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(2): 1033-1051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38386260

RESUMO

Mycobacterium tuberculosis is composed of a cumbersome signaling and protein network which partakes in bacterial survival and augments its pathogenesis. Mycobacterial PhoH2 (Mt-PhoH2) is a signaling element and a predictive phosphate starvation protein that works in an ATP-dependent manner. Here, we elaborated the characterization of Mt-PhoH2 through biophysical, biochemical, and computational methods. In addition to its intrinsic ATPase activity, the biochemical experiments revealed its GTPase activity and both activities are metal ion dependent. Magnesium, manganese, copper, iron, nickel, zinc, cesium, calcium, and lithium were examined for their effect on activity, and the optimum activity was found with 10 mM of Mg2+ ions. The kinetic parameters of 3 µM Mt-PhoH2 were observed as Km 4.873 ± 0.44 µM, Vmax 12.3817 ± 0.084 µM/min/mg, Kcat 0.0075 ± 0.00005 s-1, and Kcat/Km 0.0015 ± 0.000001 µM-1 s-1 with GTP. In the case of GTP as a substrate, a 20% decrease in enzymatic activity and a 50% increase in binding affinity of Mt-PhoH2 were observed. The substrates ADP and GDP inhibit the ATPase and GTPase activity of Mt-PhoH2. CD spectroscopy showed the dominance of alpha helix in the secondary structure of Mt-PhoH2, and this structural pattern was altered upon addition of ATP and GTP. In silico inhibitor screening revealed ML141 and NAV_2729 as two potential inhibitors of the catalytic activity of Mt-PhoH2. Mt-PhoH2 is essential for mycobacterial growth as its knockdown strain showed a decreased growth effect. Overall, the present article emphasizes the factors essential for the proper functioning of Mt-PhoH2 which is a participant in the toxin-antitoxin machinery and may also play an important role in phosphate starvation.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Cinética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/química
2.
Nucleic Acids Res ; 51(17): 9415-9431, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37558241

RESUMO

Nuclear-retained long non-coding RNAs (lncRNAs) including MALAT1 have emerged as critical regulators of many molecular processes including transcription, alternative splicing and chromatin organization. Here, we report the presence of three conserved and thermodynamically stable RNA G-quadruplexes (rG4s) located in the 3' region of MALAT1. Using rG4 domain-specific RNA pull-down followed by mass spectrometry and RNA immunoprecipitation, we demonstrated that the MALAT1 rG4 structures are specifically bound by two nucleolar proteins, Nucleolin (NCL) and Nucleophosmin (NPM). Using imaging, we found that the MALAT1 rG4s facilitate the localization of both NCL and NPM to nuclear speckles, and specific G-to-A mutations that disrupt the rG4 structures compromised the localization of both NCL and NPM in speckles. In vitro biophysical studies established that a truncated version of NCL (ΔNCL) binds tightly to all three rG4s. Overall, our study revealed new rG4s within MALAT1, established that they are specifically recognized by NCL and NPM, and showed that disrupting the rG4s abolished localization of these proteins to nuclear speckles.


Assuntos
Quadruplex G , RNA Longo não Codificante , Nucleofosmina , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Longo não Codificante/genética , Humanos , Nucleolina
3.
Nucleic Acids Res ; 50(1): 378-396, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761272

RESUMO

MALAT1, an abundant lncRNA specifically localized to nuclear speckles, regulates alternative-splicing (AS). The molecular basis of its role in AS remains poorly understood. Here, we report three conserved, thermodynamically stable, parallel RNA-G-quadruplexes (rG4s) present in the 3' region of MALAT1 which regulates this function. Using rG4 domain-specific RNA-pull-down followed by mass-spectrometry, RNA-immuno-precipitation, and imaging, we demonstrate the rG4 dependent localization of Nucleolin (NCL) and Nucleophosmin (NPM) to nuclear speckles. Specific G-to-A mutations that abolish rG4 structures, result in the localization loss of both the proteins from speckles. Functionally, disruption of rG4 in MALAT1 phenocopies NCL knockdown resulting in altered pre-mRNA splicing of endogenous genes. These results reveal a central role of rG4s within the 3' region of MALAT1 orchestrating AS.


Assuntos
Quadruplex G , Nucleofosmina/metabolismo , Fosfoproteínas/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Células HeLa , Humanos , Nucleolina
4.
Int J Biol Macromol ; 171: 59-73, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33412199

RESUMO

Mycobacterium tuberculosis (M. tuberculosis H37Rv) utilizes the signal recognition particle pathway (SRP pathway) system for secretion of various proteins from ribosomes to the extracellular surface which plays an important role in the machinery running inside the bacterium. This system comprises of three major components FtsY, FfH and 4.5S rRNA. This manuscript highlights essential factors responsible for the optimized enzymatic activity of FtsY. Kinetic parameters include Vmax and Km for the hydrolysis of GTP by ftsY which were 20.25±5.16 µM/min/mg and 39.95±7.7 µM respectively. kcat and catalytic efficiency of the reaction were 0.012±0.003 s-1 and 0.00047±0.0001 µM/s-1 respectively. These values were affected upon changing the standard conditions. Cations (Mg2+ and Mn2+) play important role in FtsY enzymatic activity as increasing Mg2+ decrease the activity. Mn2+on the other hand is required at higher concentration around 60 mM for carrying optimum GTPase activity. FtsY is hydrolyzing ATP and GDP as well and GDP acts as an inhibitor of the reaction. MD simulation shows effective binding and stabilization of the FtsY complexed structure with GTP, GDP and ATP. Mutational analysis was done at two important residues of GTP binding motif of FtsY, namely, GXXXXGK (K236) and DXXG (D367) and showed that these mutations significantly decrease FtsY GTPase activity. FtsY is comprised of α helices, but this structural pattern was shown to change with increasing concentrations of GTP and ATP which symbolize that these ligands cause significant conformational change by variating the secondary structure to transduce signals required by downstream effectors. This binding favors the functional stabilization of FtsY by destabilization of α-helix integrity. Revealing the hidden aspects of the functioning of FtsY might be an essential part for the understanding of the SRP pathway which is one of the important contributors of M. tuberculosis virulence.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Mycobacterium tuberculosis/genética , Receptores Citoplasmáticos e Nucleares/química , Partícula de Reconhecimento de Sinal/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Cátions Bivalentes , Expressão Gênica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , Magnésio/química , Magnésio/metabolismo , Manganês/química , Manganês/metabolismo , Simulação de Dinâmica Molecular , Mutação , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Transdução de Sinais , Especificidade por Substrato , Termodinâmica
5.
Biochim Biophys Acta Gen Subj ; 1863(11): 129416, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425729

RESUMO

Albeit most studies demonstrate the inhibitory role of G-quadruplex in the 5' Untranslated Region (5' UTR), our previous report depicted its completely contrasting activating role in the 5' UTR of transforming growth factor ß2 (TGFß2) mRNA. Therefore, we screened the 5' UTR of TGFß2 manually and identified a second putative G-quadruplex sequence. Our in vitro experiments encompassing CD and UV spectroscopy confirmed the ability of this sequence to form a G-quadruplex and in cellulo studies further indicated its activating role in modulation of TGFß2 gene expression. Our study suggests that these two 5' UTR G-quadruplexes most probably operate additively to substantially increase gene expression of TGFß2. Neither of the two G-quadruplex alone is sufficient enough to drastically augment protein production. Both G-quadruplexes are essential for increasing protein output. To the best of our knowledge, our study is the first report showcasing the combinatorial role of two G-quadruplexes in the 5' UTR of an mRNA.


Assuntos
Regiões 5' não Traduzidas , Quadruplex G , Regulação da Expressão Gênica , Fator de Crescimento Transformador beta2 , Humanos , Células MCF-7 , Fator de Crescimento Transformador beta2/biossíntese , Fator de Crescimento Transformador beta2/genética
6.
Biochemistry ; 58(6): 514-525, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30585723

RESUMO

Noncoding RNAs are functional RNA molecules that get transcribed from DNA but are not translated into proteins; yet, they can regulate gene expression at transcriptional and post-transcriptional levels. Secondary structures present within these RNAs play a major role in determining their nature of function. In the case of miRNAs, the precursor miRNA have a hairpin stem loop structure which is required for Dicer recognition and further maturation. Alternately, it might assume a G-quadruplex structure. The transition from hairpin to G-quadruplex depends upon the nucleotide sequence as well as the cellular microenvironment, and this might affect the miRNA maturation and other downstream activity. Formation of the G-quadruplex within precursor miRNA-149 has been shown to inhibit Dicer processing activity followed by suppression of miRNA-149 maturation in cancer cells. In this report, we show that suppression of cell proliferation by the upregulated miRNA-149 could be rescued by unfolding the G-quadruplex present in pre-miRNA-149 by TmPyP4 (Porphyrin) treatment. Using UV-visible spectroscopy, circular dichroism, and isothermal titration calorimetry, we observed that TmPyP4 binds strongly to G-quadruplex and unfolds it, which was further verified by NMR spectroscopy. In cellulo, qRT-PCR measurements of miRNA-149 in MCF-7 breast cancer cells showed concentration dependent enhancement of mature miRNA-149 upon treatment of TmPyP4. As a consequence of enhanced miRNA-149 activity, we also observe the reduction in miRNA-149 target protein ZBTB2 that eventually leads to reduced cell proliferation.


Assuntos
Quadruplex G/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Conformação de Ácido Nucleico/efeitos dos fármacos , Porfirinas/farmacologia , Proteínas Repressoras/metabolismo , Proliferação de Células , Humanos , Células MCF-7 , MicroRNAs/química , MicroRNAs/genética , Fármacos Fotossensibilizantes/farmacologia , Proteínas Repressoras/genética , Ensaio Tumoral de Célula-Tronco
7.
Biochemistry ; 56(37): 5011-5025, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28805060

RESUMO

By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (104-106) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.


Assuntos
Alanina/análogos & derivados , Proteínas de Bactérias/antagonistas & inibidores , Cisteína Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Haemophilus influenzae/enzimologia , Modelos Moleculares , Salmonella enterica/metabolismo , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Alanina/farmacologia , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ligação Competitiva , Domínio Catalítico , Cristalografia por Raios X , Cisteína Sintase/química , Cisteína Sintase/genética , Cisteína Sintase/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Haemophilus influenzae/metabolismo , Cinética , Ligantes , Conformação Molecular , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Salmonella enterica/enzimologia , Serina/química , Serina/metabolismo , Serina O-Acetiltransferase/química , Serina O-Acetiltransferase/genética , Serina O-Acetiltransferase/metabolismo , Serina O-Acetiltransferase/farmacologia
8.
Biochemistry ; 56(18): 2385-2399, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28414426

RESUMO

Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2.


Assuntos
Cisteína Sintase/química , Cisteína/química , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/enzimologia , Serina O-Acetiltransferase/química , Sítios de Ligação , Clonagem Molecular , Cisteína/biossíntese , Cisteína Sintase/genética , Cisteína Sintase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética , Serina O-Acetiltransferase/genética , Serina O-Acetiltransferase/metabolismo , Especificidade por Substrato
9.
J Phys Chem B ; 120(10): 2691-700, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26907668

RESUMO

Ionic liquids (ILs) are salts with poor ionic coordination, resultantly remaining in liquid state below 100 °C and some may retain liquid state even at room temperature. ILs are known to provide a conducive environment for many biological enzymatic reactions, but their interaction with biomacromolecules are poorly understood. In the present study, we investigate the effect of various ionic liquids on DNA-small molecule interaction using calf thymus DNA (ctDNA)-ethidium bromide (EB) as a model system. The effect of various ionic liquids on these interactions is studied by an array of techniques such as circular dichroism (CD), UV melting, fluorescence exclusion and isothermal titration calorimetry. Interestingly, we observed that presence of IL increased the stability of ctDNA without altering its structure. The binding affinities Kbs for EB binding to ctDNA in the presence of 300 mM ILs are about half order of magnitude smaller than the Kbs in absence of ILs and correspond to a less favorable free energy. We noted that, when adjusted to corresponding buffer condition, the unfavorable shift in ΔG of ctDNA-EB interaction is attributed to decreased entropy in the case of ILs, whereas the same effect by NaCl was due to increased enthalpy.


Assuntos
DNA/química , Etídio/química , Líquidos Iônicos/química , Bibliotecas de Moléculas Pequenas/química , Cloreto de Sódio/química , Termodinâmica , Animais , Bovinos , Estrutura Molecular
10.
PLoS One ; 10(5): e0124333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938298

RESUMO

Fad35R from Mycobacterium tuberculosis binds to the promoter site of Fad35 operon and its DNA binding activities are reduced in the presence of tetracycline and palmitoyl-CoA. We resolved the crystal structure of Fad35R using single-wavelength anomalous diffraction method (SAD). Fad35R comprises canonical DNA binding domain (DBD) and ligand binding domain (LBD), but displays several distinct structural features. Two recognition helices of two monomers in the homodimer are separated by ~ 48 Å and two core triangle-shaped ligand binding cavities are well exposed to solvent. Structural comparison with DesT and QacR structures suggests that ligand binding-induced movement of α7, which adopts a straight conformation in the Fad35R, may be crucial to switch the conformational states between repressive and derepressive forms. Two DBDs are packed asymmetrically, creating an alternative dimer interface which coincides with the possible tetramer interface that connects the two canonical dimers. Quaternary state of alternative dimer mimics a closed-state structure in which two recognition helices are distanced at ~ 35 Å and ligand binding pockets are inaccessible. Results of biophysical studies indicate that Fad35R has the propensity to oligomerize in solution in the presence of tetracycline. We present the first structure of a FadR homologue from mycobacterium and the structure reveals DNA and ligand binding features of Fad35R and also provides a view on alternative quaternary states that mimic open and closed forms of the regulator.


Assuntos
Apoproteínas/química , Proteínas de Bactérias/química , Mycobacterium tuberculosis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
11.
Biochemistry ; 53(50): 7870-83, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25427234

RESUMO

Dug1p, a M20 family metallopeptidase and human orthologue of carnosinase, hydrolyzes Cys-Gly dipeptide, the last step of glutathione (GSH) degradation in Saccharomyces cerevisiae. Molecular bases of peptide recognition by Dug1p and other M20 family peptidases remain unclear in the absence of structural information about enzyme-peptide complexes. We report the crystal structure of Dug1p at 2.55 Å resolution in complex with a Gly-Cys dipeptide and two Zn(2+) ions. The dipeptide is trapped in the tunnel-like active site; its C-terminus is held by residues at the S1' binding pocket, whereas the S1 pocket coordinates Zn(2+) ions and the N-terminus of the peptide. Superposition with the carnosinase structure shows that peptide mimics the inhibitor bestatin, but active site features are altered upon peptide binding. The space occupied by the N-terminus of bestatin is left unoccupied in the Dug1p structure, suggesting that tripeptides could bind. Modeling of tripeptides into the Dug1p active site showed tripeptides fit well. Guided by the structure and modeling, we examined the ability of Dug1p to hydrolyze tripeptides, and results show that Dug1p hydrolyzes tripeptides selectively. Point mutations of catalytic residues do not abolish the peptide binding but abolish the hydrolytic activity, suggesting a noncooperative mode in peptide recognition. In summary, results reveal that peptides are recognized primarily through their amino and carboxyl termini, but hydrolysis depends on the properties of peptide substrates, dictated by their respective sequences. Structural similarity between the Dug1p-peptide complex and the bestatin-bound complex of CN2 suggests that the Dug1p-peptide structure can be used as a template for designing natural peptide inhibitors.


Assuntos
Dipeptidases/química , Metaloproteases/química , Modelos Moleculares , Peptídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Zinco/química , Sítios de Ligação , Cristalografia por Raios X , Dipeptidases/genética , Dipeptidases/metabolismo , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Zinco/metabolismo
12.
Biochemistry ; 51(7): 1346-56, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22268791

RESUMO

PhoP, the response regulator of the PhoP/PhoQ system, regulates Mg(2+) homeostasis in Salmonella typhimurium. Dimerization of PhoP on the DNA is necessary for its regulatory function, and PhoP regulates the expression of genes in a phosphorylation-dependent manner. Higher PhoP concentrations, however, can activate PhoP and substitute for phosphorylation-dependent gene regulation. Activation of PhoP by phosphorylation is explained by self-assembly of phosphorylated PhoP (PhoP-p) in solution and binding of the PhoP-p dimer to the promoter. To understand the mechanism of PhoP dimerization on the DNA, we examined the interactions of PhoP with double-stranded DNAs containing the canonical PhoP box (PB). We present results from multiple biophysical methods, demonstrating that PhoP is a monomer in solution over a range of concentrations and binds to PB in a stepwise manner with a second PhoP molecule binding weakly. The affinity for the binding of the first PhoP molecule to PB is more than ∼17-fold higher than the affinity of the second PhoP monomer for PB. Kinetic analyses of PhoP binding reveal that the on rate of the second PhoP monomer binding is the rate-limiting step during the formation of the (PhoP)(2)-DNA complex. Results show that a moderate increase in PhoP concentration can promote dimerization of PhoP on the DNA, which otherwise could be achieved by PhoP-p at much lower protein concentrations. Detailed analyses of PhoP-DNA interactions have revealed the existence of a kinetic barrier that is the key for specificity in the formation of the productive (PhoP)(2)-DNA complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , DNA/química , Biofísica/métodos , Cromatografia/métodos , Cromatografia em Gel , Dimerização , Regulação Bacteriana da Expressão Gênica , Cinética , Magnésio/química , Modelos Químicos , Oligonucleotídeos/química , Fosforilação , Salmonella typhimurium/metabolismo , Espectrometria de Fluorescência/métodos , Fatores de Tempo , Ultracentrifugação
13.
Anal Biochem ; 418(1): 134-42, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21771575

RESUMO

Chemical modifications of substrate peptides are often necessary to monitor the hydrolysis of small bioactive peptides. We developed an electrospray ionization mass spectrometry (ESI-MS) assay for studying substrate distributions in reaction mixtures and determined steady-state kinetic parameters, the Michaelis-Menten constant (K(m)), and catalytic turnover rate (V(max)/[E](t)) for three metallodipeptidases: two carnosinases (CN1 and CN2) from human and Dug1p from yeast. The turnover rate (V(max)/[E](t)) of CN1 and CN2 determined at pH 8.0 (112.3 and 19.5s(-1), respectively) suggested that CN1 is approximately 6-fold more efficient. The turnover rate of Dug1p for Cys-Gly dipeptide at pH 8.0 was found to be slightly lower (73.8s(-1)). In addition, we determined kinetic parameters of CN2 at pH 9.2 and found that the turnover rate was increased by 4-fold with no significant change in the K(m). Kinetic parameters obtained by the ESI-MS method are consistent with results of a reverse-phase high-performance liquid chromatography (RP-HPLC)-based assay. Furthermore, we used tandem MS (MS/MS) analyses to characterize carnosine and measured its levels in CHO cell lines in a time-dependent manner. The ESI-MS method developed here obviates the need for substrate modification and provides a less laborious, accurate, and rapid assay for studying kinetic properties of dipeptidases in vitro as well as in vivo.


Assuntos
Dipeptidases/química , Saccharomyces cerevisiae/enzimologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Células CHO , Cricetinae , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Humanos , Cinética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biochimie ; 93(2): 175-86, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20868722

RESUMO

Dug1p is a recently identified novel dipeptidase and plays an important role in glutathione (GSH) degradation. To understand the mechanism of its substrate recognition and specificity towards Cys-Gly dipeptides, we characterized the solution properties of Dug1p and studied the thermodynamics of Dug1p-peptide interactions. In addition, we used homology modeling and ligand docking approaches to get structural insights into Dug1p-peptide interaction. Dug1p exists as dimer and the stoichiometry of peptide-Dug1p complex is 2:1 indicating each monomer in the dimer binds to one peptide. Thermodynamic studies indicate that the free energy change for Dug1p-peptide complex formation is similar (▵G(bind) âˆ¼ -7.0 kcal/mol) for a variety of peptides of different composition and length (22 peptides). Three-dimensional model of Dug1p is constructed and docking of peptides to the modeled structure suggests that hydrogen bonding to active site residues (E172, E171, and D137) lock the N-terminal of the peptide into the binding site. Dug1p recognizes peptides in a metal independent manner and peptide binding is not sensitive to salts (dlogK/dlog[salt] âˆ¼ 0) over a range of [NaCl] (0.02-0.5 M), [ZnCl(2)], and [MnCl(2)] (0-0.5 mM). Our results indicate that promiscuity in peptide binding results from the locking of peptide N-terminus into the active site. These observations were supported by our competitive inhibition activity assays. Dug1p activity towards Cys-Gly peptide is significantly reduced (∼ 70%) in the presence of Glu-Cys-Gly. Therefore, Dug1p can recognize a variety of oligopeptides, but has evolved with post-binding screening potential to hydrolyze Cys-Gly peptides selectively.


Assuntos
Dipeptidases/química , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos , Regulação Alostérica , Ligação Competitiva , Dipeptídeos/química , Estabilidade Enzimática , Ligantes , Manganês/farmacologia , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Análise Espectral , Especificidade por Substrato , Termodinâmica , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...