Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 245: 106-9, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26794662

RESUMO

Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficients using human kinetic data obtained from in vitro and in vivo experimentation as well as a default compound-specific calculation based on physicochemical characteristics used in the absence of kinetic data. A dermal model was developed to describe lindane diffusion into the skin, where the skin compartment consisted of homogeneous dermal tissue. This study utilized Fick's law of diffusion along with chemical binding to protein and lipids to determine appropriate dermal absorption parameters which were then incorporated into a physiologically based pharmacokinetic (PBPK) model to describe in vivo kinetics. The estimation of permeability coefficients using chemical binding in combination with in vivo data demonstrates the advantages of combining physiochemical properties with a PBPK model to predict dermal absorption.


Assuntos
Hexaclorocicloexano/farmacocinética , Inseticidas/farmacocinética , Absorção Cutânea , Algoritmos , Difusão , Humanos , Metabolismo dos Lipídeos , Modelos Biológicos , Permeabilidade , Ligação Proteica , Pele/metabolismo
2.
Toxicol Appl Pharmacol ; 283(1): 9-19, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25529470

RESUMO

Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neurons in vitro using "faux" (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC50 for increased firing rates in primary cultures of cortical neurons was 0.6µg/ml. Media and cell lindane concentrations at the EC50 were 0.4µg/ml and 7.1µg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7-1.9µg/ml and 5-11µg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average=7µg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC50 dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity.


Assuntos
Hexaclorocicloexano/farmacocinética , Hexaclorocicloexano/toxicidade , Modelos Biológicos , Neurotoxinas/farmacocinética , Neurotoxinas/toxicidade , Convulsões/induzido quimicamente , Animais , Encéfalo/metabolismo , Células Cultivadas , Feminino , Hexaclorocicloexano/sangue , Humanos , Masculino , Microeletrodos , Neocórtex/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurotoxinas/sangue , Ratos Long-Evans , Convulsões/metabolismo , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...