Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 56(4): 582-594, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29040064

RESUMO

Background A number of factors regarding blood collection, handling and storage may affect sample quality. The purpose of this study was to assess the impact on plasma protein profiles by delayed centrifugation and plasma separation and multiple freeze-thaw cycles. Methods Blood samples drawn from 16 healthy individuals were collected into ethylenediaminetetraacetic acid tubes and kept either at 4 °C or 22 °C for 1-36 h prior to centrifugation. Plasma samples prepared 1 h after venipuncture were also subjected to two to eight cycles of freezing at -80 °C and thawing at 22 °C. Multiplex proximity extension assay, an antibody-based protein assay, was used to investigate the influence on plasma proteins. Results Up to 36 h delay before blood centrifugation resulted in significant increases of 16 and 40 out of 139 detectable proteins in samples kept at 4 °C or 22 °C, respectively. Some increases became noticeable after 8 h delay at 4 °C but already after 1 h at 22 °C. For samples stored at 4 °C, epidermal growth factor (EGF), NF-kappa-B essential modulator, SRC, interleukin 16 and CD6 increased the most, whereas the five most significantly increased proteins after storage at 22 °C were CD40 antigen ligand (CD40-L), EGF, platelet-derived growth factor subunit B, C-X-C motif chemokine ligand 5 and matrix metallopeptidase 1 (MMP1). Only matrix metallopeptidase 7 (MMP7) decreased significantly over time and only after storage at 22 °C. No protein levels were found to be significantly affected by up to eight freeze-thaw cycles. Conclusions Plasma should be prepared from blood after a limited precentrifugation delay at a refrigerated temperature. By contrast, the influence by several freeze-thaw cycles on detectable protein levels in plasma was negligible.


Assuntos
Proteínas Sanguíneas/análise , Coleta de Amostras Sanguíneas/métodos , Centrifugação/métodos , Congelamento , Ensaios de Triagem em Larga Escala , Manejo de Espécimes , Adulto , Anticorpos/imunologia , Ácido Edético/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
J Circ Biomark ; 5: 9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28936257

RESUMO

The indicating FTA elute micro card™ has been developed to collect and stabilize the nucleic acid in biological samples and is widely used in human and veterinary medicine and other disciplines. This card is not recommended for protein analyses, since surface treatment may denature proteins. We studied the ability to analyse proteins in human plasma and vaginal fluid as applied to the indicating FTA elute micro card™ using the sensitive proximity extension assay (PEA). Among 92 proteins in the Proseek Multiplex Oncology Iv2 panel, 87 were above the limit of detection (LOD) in liquid plasma and 56 among 92 above LOD in plasma applied to FTA cards. Washing and protein elution protocols were compared to identify an optimal method. Liquid-based cytology samples showed a lower number of proteins above LOD than FTA cards with vaginal fluid samples applied. Our results demonstrate that samples applied to the indicating FTA elute micro card™ are amendable to protein analyses, given that a sensitive protein detection assay is used. The results imply that biological samples applied to FTA cards can be used for DNA, RNA and protein detection.

4.
PLoS One ; 9(4): e95192, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755770

RESUMO

Medical research is developing an ever greater need for comprehensive high-quality data generation to realize the promises of personalized health care based on molecular biomarkers. The nucleic acid proximity-based methods proximity ligation and proximity extension assays have, with their dual reporters, shown potential to relieve the shortcomings of antibodies and their inherent cross-reactivity in multiplex protein quantification applications. The aim of the present study was to develop a robust 96-plex immunoassay based on the proximity extension assay (PEA) for improved high throughput detection of protein biomarkers. This was enabled by: (1) a modified design leading to a reduced number of pipetting steps compared to the existing PEA protocol, as well as improved intra-assay precision; (2) a new enzymatic system that uses a hyper-thermostabile enzyme, Pwo, for uniting the two probes allowing for room temperature addition of all reagents and improved the sensitivity; (3) introduction of an inter-plate control and a new normalization procedure leading to improved inter-assay precision (reproducibility). The multiplex proximity extension assay was found to perform well in complex samples, such as serum and plasma, and also in xenografted mice and resuspended dried blood spots, consuming only 1 µL sample per test. All-in-all, the development of the current multiplex technique is a step toward robust high throughput protein marker discovery and research.


Assuntos
Imunoensaio/métodos , Reação em Cadeia da Polimerase/métodos , Animais , Proteínas Sanguíneas/metabolismo , Reações Cruzadas , DNA Polimerase Dirigida por DNA/metabolismo , Teste em Amostras de Sangue Seco , Estabilidade Enzimática , Feminino , Xenoenxertos , Humanos , Camundongos Nus , Oligonucleotídeos/metabolismo , Sensibilidade e Especificidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...