Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 99(3): 675-698, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38118437

RESUMO

Environmental change is disrupting mutualisms between organisms worldwide. Reported declines in insect populations and changes in pollinator community compositions in response to land use and other environmental drivers have put the spotlight on the need to conserve pollinators. While this is often motivated by their role in supporting crop yields, the role of pollinators for reproduction and resulting taxonomic and functional assembly in wild plant communities has received less attention. Recent findings suggest that observed and experimental gradients in pollinator availability can affect plant community composition, but we know little about when such shifts are to be expected, or the impact they have on ecosystem functioning. Correlations between plant traits related to pollination and plant traits related to other important ecosystem functions, such as productivity, nitrogen uptake or palatability to herbivores, lead us to expect non-random shifts in ecosystem functioning in response to changes in pollinator communities. At the same time, ecological and evolutionary processes may counteract these effects of pollinator declines, limiting changes in plant community composition, and in ecosystem functioning. Despite calls to investigate community- and ecosystem-level impacts of reduced pollination, the study of pollinator effects on plants has largely been confined to impacts on plant individuals or single-species populations. With this review we aim to break new ground by bringing together aspects of landscape ecology, ecological and evolutionary plant-insect interactions, and biodiversity-ecosystem functioning research, to generate new ideas and hypotheses about the ecosystem-level consequences of pollinator declines in response to land-use change, using grasslands as a focal system. Based on an integrated set of seven hypotheses, we call for more research investigating the putative pollinator-mediated links between landscape-scale land use and ecosystem functioning. In particular, future research should use combinations of experimental and observational approaches to assess the effects of changes in pollinator communities over multiple years and across species on plant communities and on trait distributions both within and among species.


Assuntos
Pradaria , Insetos , Polinização , Polinização/fisiologia , Animais , Insetos/fisiologia , Plantas/classificação , Ecossistema , Biodiversidade
2.
Oecologia ; 201(3): 585-597, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681784

RESUMO

Birds breeding in urban environments have lower reproductive output compared to rural conspecifics, most likely because of food limitation. However, which characteristics of urban environments may cause this deficiency is not clear. Here, we investigated how tree composition within urban territories of passerine birds is associated with breeding probability and reproductive success. We used 7 years of data of breeding occupancy for blue and great tits (Cyanistes caeruleus; Parus major) and several reproductive traits for great tits, from 400 urban nest boxes located in 5 parks within the city of Malmö, Sweden. We found that tits, overall, were less likely to breed in territories dominated by either non-native trees or beech trees. Great tit chicks reared in territories dominated by non-native trees weighed significantly less, compared to territories with fewer non-native trees. An earlier onset of breeding correlated with increased chick weight in great tits. Increasing number of common oak trees (Quercus robur) was associated with delayed onset of breeding in great tits. Notably, as offspring survival probability generally increased by breeding earlier, in particular in oak-dominated territories, our results suggest that delayed onset of breeding induced by oak trees may be maladaptive and indicate a mismatch to this food source. Our results demonstrate that tree composition may have important consequences on breeding success of urban birds, but some of these effects are not consistent between years, highlighting the need to account for temporal effects to understand determinants of breeding success and inform optimal management in urban green spaces.


Assuntos
Passeriformes , Aves Canoras , Animais , Melhoramento Vegetal , Alimentos , Suécia
3.
Glob Chang Biol ; 28(21): 6152-6164, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35983686

RESUMO

Urbanization is a major contributor to biodiversity declines. However, studies assessing effects of urban landscapes per se (i.e., disentangled from focal habitat effects) on biodiversity across spatial scales are lacking. Understanding such scale-dependent effects is fundamental to preserve habitats along an urbanization gradient in a way that maximizes overall biodiversity. We investigated the impact of landscape urbanization on communities of woodland-breeding bird species in individual (local scale) and across multiple (regional scale) cities, while controlling for the quality of sampled habitats (woodlands). We conducted bird point counts and habitat quality mapping of trees, dead wood, and shrubs in 459 woodlands along an urban to rural urbanization gradient in 32 cities in Sweden. Responses to urbanization were measured as local and regional total diversity (γ), average site diversity (α), and diversity between sites (ß). We also assessed effects on individual species and to what extent dissimilarities in species composition along the urbanization gradient were driven by species nestedness or turnover. We found that landscape urbanization had a negative impact on γ-, α-, and ß-diversity irrespective of spatial scale, both regarding all woodland-breeding species and red-listed species. At the regional scale, dissimilarities in species composition between urbanization levels were due to nestedness, that is, species were lost with increased landscape urbanization without being replaced. In contrast, dissimilarities at the local scale were mostly due to species turnover. Because there was no difference in habitat quality among woodlands across the urbanization gradient, we conclude that landscape urbanization as such systematically causes poorer and more homogeneous bird communities in adjacent natural habitats. However, the high local turnover and the fact that several species benefited from urbanization demonstrates that natural habitats along the entire urbanization gradient are needed to maintain maximally diverse local bird communities.


Assuntos
Melhoramento Vegetal , Urbanização , Animais , Biodiversidade , Aves , Ecossistema , Florestas
4.
Ecol Appl ; 32(8): e2696, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35735258

RESUMO

Control of crop pests by shifting host plant availability and natural enemy activity at landscape scales has great potential to enhance the sustainability of agriculture. However, mainstreaming natural pest control requires improved understanding of how its benefits can be realized across a variety of agroecological contexts. Empirical studies suggest significant but highly variable responses of natural pest control to land-use change. Current ecological models are either too specific to provide insight across agroecosystems or too generic to guide management with actionable predictions. We suggest obtaining the full benefit of available empirical, theoretical, and methodological knowledge by combining trait-mediated understanding from correlative studies with the explicit representation of causal relationships achieved by mechanistic modeling. To link these frameworks, we adapt the concept of archetypes, or context-specific generalizations, from sustainability science. Similar responses of natural pest control to land-use gradients across cases that share key attributes, such as functional traits of focal organisms, indicate general processes that drive system behavior in a context-sensitive manner. Based on such observations of natural pest control, a systematic definition of archetypes can provide the basis for mechanistic models of intermediate generality that cover all major agroecosystems worldwide. Example applications demonstrate the potential for upscaling understanding and improving predictions of natural pest control, based on knowledge transfer and scientific synthesis. A broader application of this mechanistic archetype approach promises to enhance ecology's contribution to natural resource management across diverse regions and social-ecological contexts.


Assuntos
Ecossistema , Controle Biológico de Vetores , Controle de Pragas , Agricultura , Produtos Agrícolas , Recursos Naturais
5.
Ecol Appl ; 32(4): e2576, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191107

RESUMO

Biodiversity-benefits of organic farming have mostly been documented at the field scale. However, these benefits from organic farming to species diversity may not propagate to larger scales because variation in the management of different crop types and seminatural habitats in conventional farms might allow species to cope with intensive crop management. We studied flowering plant communities using a spatially replicated design in different habitats (cereal, ley and seminatural grasslands) in organic and conventional farms, distributed along a gradient in proportion of seminatural grasslands. We developed a novel method to compare the rates of species turnover within and between habitats, and between the total species pools in the two farming systems. We found that the intrahabitat species turnover did not differ between organic and conventional farms, but that organic farms had a significantly higher interhabitat turnover of flowering plant species compared with conventional ones. This was mainly driven by herbicide-sensitive species in cereal fields in organic farms, as these contained 2.5 times more species exclusive to cereal fields compared with conventional farms. The farm-scale species richness of flowering plants was higher in organic compared with conventional farms, but only in simple landscapes. At the interfarm level, we found that 36% of species were shared between the two farming systems, 37% were specific to organic farms whereas 27% were specific to conventional ones. Therefore, our results suggest that that both community nestedness and species turnover drive changes in species composition between the two farming systems. These large-scale shifts in species composition were driven by both species-specific herbicide and nitrogen sensitivity of plants. Our study demonstrates that organic farming should foster a diversity of flowering plant species from local to landscape scales, by promoting unique sets of arable-adapted species that are scarce in conventional systems. In terms of biodiversity conservation, our results call for promoting organic farming over large spatial extents, especially in simple landscapes, where such transitions would benefit plant diversity most.


Assuntos
Herbicidas , Agricultura Orgânica , Agricultura/métodos , Biodiversidade , Ecossistema , Agricultura Orgânica/métodos , Plantas
6.
Biol Futur ; 71(1-2): 9-18, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34554532

RESUMO

European nature conservation has a strong focus on farmland harbouring threatened species that mainly co-occur with traditional agriculture shaped way before the green revolution. Increased land-use intensity in agriculture has caused an alarming decline in farmland biodiversity during the last century. How can a landscape perspective contribute to fostering our understanding on causes and consequences of farmland biodiversity decline and improving the effectiveness of conservation measures? To answer these questions, we discuss the importance of landscape compositional and configurational heterogeneity, understanding ecological mechanisms determining how landscape structure affects farmland biodiversity and considering the interplay of farmland biodiversity and ecosystem service conservation.


Assuntos
Agricultura/métodos , Biodiversidade , Conservação dos Recursos Naturais , Animais , Espécies em Perigo de Extinção , Europa (Continente) , Humanos
7.
Ambio ; 49(8): 1377-1393, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31776967

RESUMO

Temporal aspects of ecosystem services have gained surprisingly little attention given that ecosystem service flows are not static but change over time. We present the first systematic review to describe and establish how studies have assessed temporal patterns in supply and demand of ecosystem services. 295 studies, 2% of all studies engaging with the ecosystem service concept, considered changes in ecosystem services over time. Changes were mainly characterised as monotonic and linear (81%), rather than non-linear or through system shocks. Further, a lack of focus of changing ecosystem service demand (rather than supply) hampers our understanding of the temporal patterns of ecosystem services provision and use. Future studies on changes in ecosystem services over time should (1) more explicitly study temporal patterns, (2) analyse trade-offs and synergies between services over time, and (3) integrate changes in supply and demand and involve and empower stakeholders in temporal ecosystem services research.


Assuntos
Conservação dos Recursos Naturais , Ecossistema
8.
Sci Adv ; 5(10): eaax0121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663019

RESUMO

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


Assuntos
Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Agricultura/métodos , Biodiversidade , Produção Agrícola/métodos , Ecossistema , Humanos , Controle Biológico de Vetores/métodos , Polinização/fisiologia
9.
Oecologia ; 188(3): 863-873, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30187116

RESUMO

To understand the relationship between conservation measures and agricultural yields, we need to know the contributions of organisms to both ecosystem services and disservices. We studied the activity and contribution of birds and mammals to intermediate ecosystem services (predation of weed seeds or invertebrate pests) and disservices (predation of crop seeds or beneficial invertebrates) in southern Sweden between June and November 2016. We measured seed and invertebrate predation rates using trays placed in front of 32 wildlife cameras in 16 cereal fields with a local habitat contrast (8 fields adjacent to another crop field and 8 fields adjacent to a semi-natural grassland) and along a landscape heterogeneity gradient (amount of semi-natural grassland). Both activity and predation were dominated by small mammals (mainly rodents), yet only a few species contributed to predation services and disservices according to camera records. Small mammal activity and predation varied considerably over time. Small mammal activity was significantly higher at trays with crop seeds or beneficial invertebrate prey compared to trays with pest prey, and crop seed predation by small mammals was significantly higher than weed seed predation. In contrast, bird activity and predation did not differ significantly between resource types, but varied over time depending on the habitat contrast. Predation of animal prey by birds was highest after cereal harvest, independent of habitat contrast. Our study highlights that birds and in particular rodents provide important intermediate ecosystem services, but also disservices, which fluctuate strongly in intensity over time.


Assuntos
Ecossistema , Roedores , Animais , Aves , Suécia , Vertebrados
10.
Ecol Appl ; 28(8): 2109-2118, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30192426

RESUMO

Ecological intensification may reduce environmental externalities of agriculture by harnessing biodiversity to benefit regulating ecosystem services. However, to propose management options for the production of such services, there is a need to understand the spatiotemporal dynamics of net effects between ecosystem services and disservices provided by wild organisms across taxonomic groups in relation to habitat and landscape management. We studied the contribution of predatory vertebrates and invertebrates (including both carnivores and seed herbivores) to regulating ecosystem services and disservices in 16 cereal fields in response to a local habitat contrast and a landscape complexity gradient. From May to November 2016, we provided weed (predation reflects an ecosystem service) and crop (predation reflects a disservice) seeds, as well as pest (predation reflects an ecosystem service) and beneficial (predation reflects a disservice) invertebrate prey to predators. Seed predation was dominated by vertebrates, while vertebrates and invertebrates contributed equally to predation of animal prey. Before harvest, predation steadily increased from very low levels in May to high levels in July independent of the resource type. After harvest, ecosystem services declined more rapidly than disservices. The presence of adjacent seminatural grasslands promoted crop seed predation, but reduced pest prey predation. Predation on beneficial prey decreased with increasing proportions of seminatural grassland in the landscape. Predatory vertebrates and invertebrates provide important ecosystem services due to the consumption of pests. However, beneficial invertebrates and crop seeds were often consumed to a similar or even higher extent than harmful invertebrates or weed seeds. Our results therefore raise concerns that management options aimed at enhancing service providers may simultaneously increase levels of disservices. By considering positive and negative effects simultaneously, this study addresses an important knowledge gap and highlights the importance of interactions between local management, landscape composition, and service and disservice provision across taxa and over time. Considering trade-offs between ecosystem services and disservices when evaluating the net effects of biodiversity conservation measures on ecosystem service provision is crucial. Future agri-environment schemes that offer payments for seminatural habitats may need to provide higher compensation for farmers in cases where net effects are likely to be negative.


Assuntos
Produção Agrícola , Cadeia Alimentar , Herbivoria , Invertebrados/fisiologia , Comportamento Predatório , Vertebrados/fisiologia , Animais , Grão Comestível/crescimento & desenvolvimento , Sementes , Suécia
11.
Glob Chang Biol ; 23(11): 4946-4957, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28488295

RESUMO

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Assuntos
Agricultura/métodos , Artrópodes , Biodiversidade , Ecossistema , Animais
12.
Oecologia ; 179(2): 509-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26085467

RESUMO

Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landscape-level replication. We performed a field experiment to disentangle these landscape effects on the pollination of a native herb, the sticky catchfly (Lychnis viscaria), while accounting for the proportion of oilseed rape across landscapes and the local abundance of bee forage flowers. We measured pollen limitation (the degree to which seed set is pollen-limited), seed set, and seed set stability using potted plants placed in landscapes that differed in heterogeneity (composition) and distance from seminatural grassland (configuration). Pollen limitation and seed set in individual plants did not respond to landscape composition, landscape configuration, or proportion of oilseed rape. Instead, seed set increased with increasing local bee forage flower cover. However, we found within-plant variability in pollen limitation and seed set to increase with increasing distance from seminatural pasture. Our results suggest that average within-plant levels of pollen limitation and seed set respond less swiftly than the within-plant variability in pollen limitation and seed set to changes in landscape configuration. Although landscape effects on pollination were less important than predicted, we conclude that landscape configuration and local habitat characteristics play larger roles than landscape composition in the pollination of L. viscaria.


Assuntos
Abelhas/fisiologia , Caryophyllaceae/fisiologia , Ecossistema , Polinização , Agricultura , Animais , Comportamento Animal , Flores/fisiologia , Pólen , Sementes
13.
Ecol Lett ; 17(11): 1389-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25167890

RESUMO

Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.


Assuntos
Flores/genética , Magnoliopsida/genética , Filogenia , Polinização , Animais , Abelhas , Dípteros , Modelos Biológicos , Néctar de Plantas/química
14.
Ecol Lett ; 17(9): 1168-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25040328

RESUMO

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.


Assuntos
Ecossistema , Insetos/fisiologia , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Polinização , Animais , Abelhas/fisiologia , Modelos Lineares , Densidade Demográfica
15.
Oecologia ; 170(4): 979-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22700063

RESUMO

Because population size is sensitive to changes in adult survival, adult survival may be buffered against environmental variability. Philopatry may be adaptive in changing environments, but it could also constrain breeding habitat selection under changing conditions such as shifting predation regimes. Habitat preference and quality could become decoupled in long-lived philopatric species that evolved in stable environments when suddenly faced by increased adult predation risk, as dispersal may be triggered by past reproductive failure. We evaluated whether the Baltic eider (Somateria m. mollissima) population may currently face a predation-induced ecological trap. Eiders are philopatric and nest on open and forested islands. We hypothesized that open-nesting females would be disproportionately affected by increased predation. We compared female annual survival in these two habitats in 1996-2010. We also tested for effects of time trends, winter severity (NAO), female body condition, and habitat-specific predation pressure on survival. Our results revealed the lowest survival recorded for this species (Φ = 0.720), and survival on open islands was significantly lower (Φ = 0.679) than on forested islands (Φ = 0.761). Nonetheless, only 0.7 % of females changed breeding habitat type despite ample availability of alternative islands, and breeding phenology in both habitats was similar. Female survival increased with body condition, while it was unrelated to winter climate and stable over time. Open islands had a higher predation pressure on incubating females. Breeding philopatry results in a predator-mediated ecological trap for open-nesting eiders. Our results contribute to explaining the drastic decline of the Baltic eider population.


Assuntos
Distribuição Animal , Patos , Reprodução , Migração Animal , Animais , Ecossistema , Feminino , Dinâmica Populacional , Risco , Estações do Ano , Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...