Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 16(11): 5309-5338, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34552262

RESUMO

This protocol describes a complete data acquisition, analysis and computational forecasting pipeline for employing quantitative MRI data to predict the response of locally advanced breast cancer to neoadjuvant therapy in a community-based care setting. The methodology has previously been successfully applied to a heterogeneous patient population. The protocol details how to acquire the necessary images followed by registration, segmentation, quantitative perfusion and diffusion analysis, model calibration, and prediction. The data collection portion of the protocol requires ~25 min of scanning, postprocessing requires 2-3 h, and the model calibration and prediction components require ~10 h per patient depending on tumor size. The response of individual breast cancer patients to neoadjuvant therapy is forecast by application of a biophysical, reaction-diffusion mathematical model to these data. Successful application of the protocol results in coregistered MRI data from at least two scan visits that quantifies an individual tumor's size, cellularity and vascular properties. This enables a spatially resolved prediction of how a particular patient's tumor will respond to therapy. Expertise in image acquisition and analysis, as well as the numerical solution of partial differential equations, is required to carry out this protocol.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
2.
Neoplasia ; 22(12): 820-830, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33197744

RESUMO

The ability to accurately predict response and then rigorously optimize a therapeutic regimen on a patient-specific basis, would transform oncology. Toward this end, we have developed an experimental-mathematical framework that integrates quantitative magnetic resonance imaging (MRI) data into a biophysical model to predict patient-specific treatment response of locally advanced breast cancer to neoadjuvant therapy. Diffusion-weighted and dynamic contrast-enhanced MRI data is collected prior to therapy, after 1 cycle of therapy, and at the completion of the first therapeutic regimen. The model is initialized and calibrated with the first 2 patient-specific MRI data sets to predict response at the third, which is then compared to patient outcomes (N = 18). The model's predictions for total cellularity, total volume, and the longest axis at the completion of the regimen are significant within expected measurement precision (P< 0.05) and strongly correlated with measured response (P < 0.01). Further, we use the model to investigate, in silico, a range of (practical) alternative treatment plans to achieve the greatest possible tumor control for each individual in a subgroup of patients (N = 13). The model identifies alternative dosing strategies predicted to achieve greater tumor control compared to the standard of care for 12 of 13 patients (P < 0.01). In summary, a predictive, mechanism-based mathematical model has demonstrated the ability to identify alternative treatment regimens that are forecasted to outperform the therapeutic regimens the patients clinically. This has important implications for clinical trial design with the opportunity to alter oncology care in the future.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Imageamento por Ressonância Magnética , Modelos Teóricos , Terapia Neoadjuvante , Medicina de Precisão , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Análise de Dados , Gerenciamento Clínico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Método de Monte Carlo , Terapia Neoadjuvante/efeitos adversos , Terapia Neoadjuvante/métodos , Medicina de Precisão/métodos , Resultado do Tratamento
3.
Math Med Biol ; 36(3): 381-410, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30239754

RESUMO

The goal of this study is to develop an integrated, mathematical-experimental approach for understanding the interactions between the immune system and the effects of trastuzumab on breast cancer that overexpresses the human epidermal growth factor receptor 2 (HER2+). A system of coupled, ordinary differential equations was constructed to describe the temporal changes in tumour growth, along with intratumoural changes in the immune response, vascularity, necrosis and hypoxia. The mathematical model is calibrated with serially acquired experimental data of tumour volume, vascularity, necrosis and hypoxia obtained from either imaging or histology from a murine model of HER2+ breast cancer. Sensitivity analysis shows that model components are sensitive for 12 of 13 parameters, but accounting for uncertainty in the parameter values, model simulations still agree with the experimental data. Given theinitial conditions, the mathematical model predicts an increase in the immune infiltrates over time in the treated animals. Immunofluorescent staining results are presented that validate this prediction by showing an increased co-staining of CD11c and F4/80 (proteins expressed by dendritic cells and/or macrophages) in the total tissue for the treated tumours compared to the controls ($p < 0.03$). We posit that the proposed mathematical-experimental approach can be used to elucidate driving interactions between the trastuzumab-induced responses in the tumour and the immune system that drive the stabilization of vasculature while simultaneously decreasing tumour growth-conclusions revealed by the mathematical model that were not deducible from the experimental data alone.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Sistema Imunitário/efeitos dos fármacos , Modelos Teóricos , Trastuzumab/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Imunofluorescência , Camundongos , Receptor ErbB-2
4.
Expert Rev Anticancer Ther ; 18(12): 1271-1286, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30252552

RESUMO

INTRODUCTION: A defining hallmark of cancer is aberrant cell proliferation. Efforts to understand the generative properties of cancer cells span all biological scales: from genetic deviations and alterations of metabolic pathways to physical stresses due to overcrowding, as well as the effects of therapeutics and the immune system. While these factors have long been studied in the laboratory, mathematical and computational techniques are being increasingly applied to help understand and forecast tumor growth and treatment response. Advantages of mathematical modeling of proliferation include the ability to simulate and predict the spatiotemporal development of tumors across multiple experimental scales. Central to proliferation modeling is the incorporation of available biological data and validation with experimental data. Areas covered: We present an overview of past and current mathematical strategies directed at understanding tumor cell proliferation. We identify areas for mathematical development as motivated by available experimental and clinical evidence, with a particular emphasis on emerging, non-invasive imaging technologies. Expert commentary: The data required to legitimize mathematical models are often difficult or (currently) impossible to obtain. We suggest areas for further investigation to establish mathematical models that more effectively utilize available data to make informed predictions on tumor cell proliferation.


Assuntos
Proliferação de Células/fisiologia , Modelos Teóricos , Neoplasias/patologia , Diagnóstico por Imagem/métodos , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...