Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome ; 47(2): 257-65, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15060578

RESUMO

The genetic control of self-incompatibility in Brassica napus was investigated using crosses between resynthesized lines of B. napus and cultivars of oilseed rape. These crosses introduced eight C-genome S alleles from Brassica oleracea (S16, S22, S23, S25, S29, S35, S60, and S63) and one A-genome S allele from Brassica rapa (SRM29) into winter oilseed rape. The inheritance of S alleles was monitored using genetic markers and S phenotypes were determined in the F1, F2, first backcross (B1), and testcross (T1) generations. Two different F1 hybrids were used to develop populations of doubled haploid lines that were subjected to genetic mapping and scored for S phenotype. These investigations identified a latent S allele in at least two oilseed rape cultivars and indicated that the S phenotype of these latent alleles was masked by a suppressor system common to oilseed rape. These latent S alleles may be widespread in oilseed rape varieties and are possibly associated with the highly conserved C-genome S locus of these crop types. Segregation for S phenotype in subpopulations uniform for S genotype suggests the existence of suppressor loci that influenced the expression of the S phenotype. These suppressor loci were not linked to the S loci and possessed suppressing alleles in oilseed rape and non-suppressing alleles in the diploid parents of resynthesized B. napus lines.


Assuntos
Alelos , Brassica napus/genética , Brassica rapa/genética , Cruzamentos Genéticos , Frequência do Gene , Marcadores Genéticos , Genótipo , Hibridização de Ácido Nucleico , Polimorfismo de Fragmento de Restrição
2.
Genome ; 46(5): 753-60, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14608392

RESUMO

An RFLP genomic map with 316 loci was used to study the inheritance of aliphatic glucosinolates in Brassica juncea using doubled-haploid (DH) populations developed from a cross between RLM-514, an agronomically superior non-canola quality B. juncea (high erucic acid and high glucosinolates), and an agronomically poor canola quality B. juncea breeding line. Two QTLs (GSL-A2a and GSL-A2b) associated with 3-butenyl were consistent across years and locations, and explained 75% of the phenotypic variance in the population. Three QTLs (GSL-A2a, GSL-F, GSL-B3) affected 2-propenyl and explained 78% of the phenotypic variance in the population. For total aliphatic glucosinolates, five QTLs explained 30% to 45% of the total phenotypic variance in the population in different environments. Several QTLs (GSL-A7 and GSL-A3) were highly inconsistent in different environments. Major QTLs (GSL-A2a and GSL-A2b) associated with individual glucosinolates were non-significant for total aliphatic glucosinolates. A marker-assisted selection strategy based on QTLs associated with individual glucosinolates rather than total aliphatic glucosinolates is proposed for B. juncea.


Assuntos
Glucosinolatos/genética , Mostardeira/genética , Sementes/química , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Escore Lod , Polimorfismo de Fragmento de Restrição , Locos de Características Quantitativas , Sementes/genética , Especificidade da Espécie
3.
Theor Appl Genet ; 107(2): 283-90, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12669199

RESUMO

An RFLP linkage map, comprising 300 linked and 16 unlinked loci, was constructed using reciprocal DH populations of Brassica juncea. The linked loci were organized into 18 linkage groups and seven unlinked segments, covering a total map distance of 1,564 cM. The A and B genomes were identified. The chi(2) test showed that 96.1% of the common intervals in the two populations differed non-significantly for recombination fractions, thus strongly suggesting the absence of sex-based differences for recombination fractions in B. juncea. Two QTLs, E(1a) and E(1b), significantly affected erucic acid content, and individually explained 53.7% and 32.1%, respectively, and collectively 85.8% of the phenotypic variation in the population. The QTLs E(1a) and E(1b) showed epistasis, and the full model including epistasis explained nearly all of the phenotypic variation in the population. The QTLs E(1a) and E(1b) were also associated with contents of oleic, linoleic and linolenic acids. Three additional QTLs (LN(2), LN(3) and LN(4)) significantly influenced linolenic acid content. The QTL LN(2) accounted for 35.4% of the phenotypic variation in the population. Epistatic interactions were observed between the QTLs E1a and LN(2). The stability of the detected QTLs across years and locations, and breeding strategies for improving the fatty acid profile of B. juncea, are discussed.


Assuntos
Mapeamento Cromossômico , Ácidos Graxos/genética , Mostardeira/genética , Polimorfismo de Fragmento de Restrição , Canadá , Ácidos Erúcicos , Fenótipo , Locos de Características Quantitativas/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...