Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 32(3): 333-341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37277488

RESUMO

RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.


Assuntos
Surdez , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Neuroblastoma , Atrofia Óptica , Convulsões , Feminino , Humanos , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , RNA Polimerase II , Deficiência Intelectual/genética , Domínios de Homologia de src , Proteínas de Ligação a RNA/genética
2.
Eur J Clin Microbiol Infect Dis ; 40(3): 549-558, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32996031

RESUMO

Sensitivity and specificity of rapid antigen detection tests (RADTs) for detection of group A hemolytic streptococcus (GAS) vary. The purpose is to present the first SKUP (Scandinavian evaluation of laboratory equipment for point of care testing) evaluations concerning the assessment of the diagnostic performance and user-friendliness of two RADTs for detection of GAS when used under real-life conditions in primary health care. Throat samples were collected in duplicates at primary health care centers (PHCCs) from patients with symptoms of pharyngitis. The performance of QuickVue Dipstick Strep A test (307 samples) and DIAQUICK Strep A Blue Dipstick (348 samples) was evaluated using culture results at a clinical microbiology laboratory as comparison. The user-friendliness was evaluated using a questionnaire. The diagnostic sensitivity was 92% (90% confidence interval (CI) 87-96%) and 72% (90% CI 65-79%), while the diagnostic specificity was 86% (90% CI 81-90%) and 98% (90% CI 96-99%) for QuickVue Dipstick Strep A test and DIAQUICK Strep A Blue Dipstick, respectively. Both RADTs obtained acceptable assessments for user-friendliness and fulfilled SKUP's quality goal for user-friendliness. The diagnostic sensitivity for QuickVue Dipstick Strep A test and the diagnostic specificity for DIAQUICK Strep A Blue Dipstick in this objective and supplier-independent evaluation were higher compared with previous meta-analyses of RADTs. However, the diagnostic specificity for QuickVue Dipstick Strep A test and the diagnostic sensitivity for DIAQUICK Strep A Blue Dipstick were lower compared with previous meta-analyses of RADTs.


Assuntos
Antígenos de Bactérias/análise , Faringite/microbiologia , Infecções Estreptocócicas/diagnóstico , Streptococcus pyogenes/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Faringite/diagnóstico , Testes Imediatos , Atenção Primária à Saúde , Estudos Prospectivos , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade , Testes Sorológicos , Streptococcus pyogenes/imunologia , Adulto Jovem
3.
Sci Rep ; 9(1): 10730, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341187

RESUMO

The TATA-box binding protein associated factor 1 (TAF1) protein is a key unit of the transcription factor II D complex that serves a vital function during transcription initiation. Variants of TAF1 have been associated with neurodevelopmental disorders, but TAF1's molecular functions remain elusive. In this study, we present a five-generation family affected with X-linked intellectual disability that co-segregated with a TAF1 c.3568C>T, p.(Arg1190Cys) variant. All affected males presented with intellectual disability and dysmorphic features, while heterozygous females were asymptomatic and had completely skewed X-chromosome inactivation. We investigated the role of TAF1 and its association to neurodevelopment by creating the first complete knockout model of the TAF1 orthologue in zebrafish. A crucial function of human TAF1 during embryogenesis can be inferred from the model, demonstrating that intact taf1 is essential for embryonic development. Transcriptome analysis of taf1 zebrafish knockout revealed enrichment for genes associated with neurodevelopmental processes. In conclusion, we propose that functional TAF1 is essential for embryonic development and specifically neurodevelopmental processes.


Assuntos
Histona Acetiltransferases/fisiologia , Deficiência Intelectual/genética , Sistema Nervoso/crescimento & desenvolvimento , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Fator de Transcrição TFIID/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/genética , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Sistema Nervoso/embriologia , Linhagem , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Clin Chem Lab Med ; 57(7): 1006-1011, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075079

RESUMO

Background Glomerular filtration is the most important kidney function. The most accurate glomerular filtration rate (GFR) estimates are based on the clearance of exogenous filtration markers. Of these, iohexol is the only exogenous marker that is included in an external quality assessment (EQA) scheme. The aim of the present study was to evaluate the performance of the European laboratories participating in Equalis' EQA scheme for iohexol. Methods Weighed amounts of iohexol (Omnipaque) were added to plasma samples and distributed to laboratories participating in the EQA scheme for iohexol. All laboratories performed the assays in a blinded fashion. Results The number of participating laboratories varied between 27 and 34 during the study period. Iohexol was determined by HPLC in 77% of the laboratories and by UPLC/MS/MS methods in 15% of the laboratories. The mean interlaboratory coefficient of variation was 4.7% for the HPLC methods and 6.4% for the UPLC/MS/MS methods. The mean bias between calculated and measured iohexol values was -1.3 mg/L (95% confidence interval ±0.3) during the first part of the study period and 0.1 mg/L (±0.3) during the later part. Conclusions The low interlaboratory variation demonstrates that iohexol can be measured reliably by many laboratories and supports the use of iohexol as a GFR marker when there is a need for high quality GFR measurements.


Assuntos
Taxa de Filtração Glomerular , Iohexol/análise , Laboratórios , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Europa (Continente) , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Espectrometria de Massas em Tandem
5.
Hum Mol Genet ; 26(6): 1070-1077, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158657

RESUMO

Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G > A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.


Assuntos
Conexina 26/genética , Mutação em Linhagem Germinativa/genética , Ceratite/genética , Mosaicismo , Adulto , Conexina 26/biossíntese , Junções Comunicantes/genética , Junções Comunicantes/patologia , Regulação da Expressão Gênica , Genótipo , Células HeLa , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ceratite/patologia , Masculino , Mutação de Sentido Incorreto , Pele/metabolismo , Pele/patologia
6.
BMC Med Genet ; 16: 95, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467218

RESUMO

BACKGROUND: Noonan syndrome (NS), a heterogeneous developmental disorder associated with variable clinical expression including short stature, congenital heart defect, unusual pectus deformity and typical facial features, is caused by activating mutations in genes involved in the RAS-MAPK signaling pathway. CASE PRESENTATION: Here, we present a clinical and molecular characterization of a small family with Noonan syndrome. Comprehensive mutation analysis of NF1, PTPN11, SOS1, CBL, BRAF, RAF1, SHOC2, MAP2K2, MAP2K1, SPRED1, NRAS, HRAS and KRAS was performed using targeted next-generation sequencing. The result revealed a recurrent mutation in NRAS, c.179G > A (p.G60E), in the index patient. This mutation was inherited from the index patient's father, who also showed signs of NS. CONCLUSIONS: We describe clinical features in this family and review the literature for genotype-phenotype correlations for NS patients with mutations in NRAS. Neither of affected individuals in this family presented with juvenile myelomonocytic leukemia (JMML), which together with previously published results suggest that the risk for NS individuals with a germline NRAS mutation developing JMML is not different from the proportion seen in other NS cases. Interestingly, 50% of NS individuals with an NRAS mutation (including our family) present with lentigines and/or Café-au-lait spots. This demonstrates a predisposition to hyperpigmented lesions in NRAS-positive NS individuals. In addition, the affected father in our family presented with a hearing deficit since birth, which together with lentigines are two characteristics of NS with multiple lentigines (previously LEOPARD syndrome), supporting the difficulties in diagnosing individuals with RASopathies correctly. The clinical and genetic heterogeneity observed in RASopathies is a challenge for genetic testing. However, next-generation sequencing technology, which allows screening of a large number of genes simultaneously, will facilitate an early and accurate diagnosis of patients with RASopathies.


Assuntos
Análise Mutacional de DNA/métodos , GTP Fosfo-Hidrolases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Membrana/genética , Mutação , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Adulto , Manchas Café com Leite/epidemiologia , Manchas Café com Leite/genética , Feminino , Genes ras , Humanos , Lentigo , Leucemia Mielomonocítica Juvenil/epidemiologia , Masculino , Pessoa de Meia-Idade , Linhagem
7.
J Med Genet ; 52(3): 195-202, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25612909

RESUMO

BACKGROUND: Fetal akinesia deformation sequence syndrome (FADS, OMIM 208150) is characterised by decreased fetal movement (fetal akinesia) as well as intrauterine growth restriction, arthrogryposis, and developmental anomalies (eg, cystic hygroma, pulmonary hypoplasia, cleft palate, and cryptorchidism). Mutations in components of the acetylcholine receptor (AChR) pathway have previously been associated with FADS. METHODS AND RESULTS: We report on a family with recurrent fetal loss, where the parents had five affected fetuses/children with FADS and one healthy child. The fetuses displayed no fetal movements from the gestational age of 17 weeks, extended knee joints, flexed hips and elbows, and clenched hands. Whole exome sequencing of one affected fetus and the parents was performed. A novel homozygous frameshift mutation was identified in muscle, skeletal receptor tyrosine kinase (MuSK), c.40dupA, which segregated with FADS in the family. Haplotype analysis revealed a conserved haplotype block suggesting a founder mutation. MuSK (muscle-specific tyrosine kinase receptor), a component of the AChR pathway, is a main regulator of neuromuscular junction formation and maintenance. Missense mutations in MuSK have previously been reported to cause congenital myasthenic syndrome (CMS) associated with AChR deficiency. CONCLUSIONS: To our knowledge, this is the first report showing that a mutation in MuSK is associated with FADS. The results support previous findings that CMS and/or FADS are caused by complete or severe functional disruption of components located in the AChR pathway. We propose that whereas milder mutations of MuSK will cause a CMS phenotype, a complete loss is lethal and will cause FADS.


Assuntos
Anormalidades Múltiplas/genética , Artrogripose/genética , Junção Neuromuscular/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Anormalidades Múltiplas/fisiopatologia , Artrogripose/fisiopatologia , Exoma/genética , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Feto/fisiopatologia , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Masculino , Mutação , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/fisiopatologia , Linhagem , Transdução de Sinais
8.
Am J Med Genet A ; 164A(3): 579-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357598

RESUMO

Neurofibromatosis-Noonan syndrome (NFNS) is a rare condition with clinical features of both neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). All three syndromes belong to the RASopathies, which are caused by dysregulation of the RAS-MAPK pathway. The major gene involved in NFNS is NF1, but co-occurring NF1 and PTPN11 mutations in NFNS have been reported. Knowledge about possible involvement of additional RASopathy-associated genes in NFNS is, however, very limited. We present a comprehensive clinical and molecular analysis of eight affected individuals from three unrelated families displaying features of NF1 and NFNS. The genetic etiology of the clinical phenotypes was investigated by mutation analysis, including NF1, PTPN11, SOS1, KRAS, NRAS, BRAF, RAF1, SHOC2, SPRED1, MAP2K1, MAP2K2, and CBL. All three families harbored a heterozygous NF1 variant, where the first family had a missense variant, c.5425C>T;p.R1809C, the second family a recurrent 4bp-deletion, c.6789_6792delTTAC;p.Y2264Tfs*6, and the third family a splice-site variant, c.2991-1G>A, resulting in skipping of exon 18 and an in-frame deletion of 41 amino acids. These NF1 variants have all previously been reported in NF1 patients. Surprisingly, both c.6789_6792delTTAC and c.2991-1G>A are frequently associated with NF1, but association to NFNS has, to our knowledge, not previously been reported. Our results support the notion that NFNS represents a variant of NF1, genetically distinct from NS, and is caused by mutations in NF1, some of which also cause classical NF1. Due to phenotypic overlap between NFNS and NS, we propose screening for NF1 mutations in NS patients, preferentially when café-au-lait spots are present.


Assuntos
Estudos de Associação Genética , Mutação , Neurofibromatoses/diagnóstico , Neurofibromatoses/genética , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Análise Mutacional de DNA , Fácies , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
9.
Am J Med Genet A ; 155A(6): 1217-24, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21548061

RESUMO

Noonan syndrome (NS) is a heterogeneous disorder caused by activating mutations in the RAS-MAPK signaling pathway. It is associated with variable clinical expression including short stature, congenital heart defect, unusual pectus deformity, and typical facial features and the inheritance is autosomal dominant. Here, we present a clinical and molecular characterization of a patient with Noonan-like syndrome with loose anagen hair phenotype and additional features including mild psychomotor developmental delay, osteoporosis, gingival hyperplasia, spinal neuroblastoma, intrathoracic extramedullary hematopoiesis, and liver hemangioma. Mutation analysis of PTPN11, SOS1, RAF1, KRAS, BRAF, MEK1, MEK2, NRAS, and SHOC2 was conducted, revealing a co-occurrence of two heterozygous previously identified mutations in the index patient. The mutation SHOC2 c.4A > G; p.Ser2Gly represents a de novo mutation, whereas, PTPN11 c.1226G > C; p.Gly409Ala was inherited from the mother and also identified in the brother. The mother and the brother present with some NS manifestations, such as short stature, delayed puberty, keratosis pilaris, café-au-lait spots, refraction error (mother), and undescended testis (brother), but no NS facial features, supporting the notion that the PTPN11 p.Gly409Ala mutation leads to a relatively mild phenotype. We propose that, the atypical phenotype of the young woman with NS reported here is an additive effect, where the PTPN11 mutation acts as a modifier. Interestingly, co-occurrence of RAS-MAPK mutations has been previously identified in a few patients with variable NS or neurofibromatosis-NS phenotypes. Taken together, the results suggest that co-occurrence of mutations or modifying loci in the RAS-MAPK pathway may contribute to the clinical variability observed among NS patients.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Sequência de Bases , Criança , Análise Mutacional de DNA , Feminino , Humanos , Dados de Sequência Molecular , Mutação/genética , Linhagem
10.
Ophthalmic Genet ; 32(2): 83-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21192766

RESUMO

PURPOSE: To describe morphological and functional changes in a single patient with multifocal Best vitelliform macular dystrophy (BVMD) and to perform a genotype/phenotype correlation. METHODS: The proband with multifocal BVMD and three of her family members were examined with electrooculography (EOG), full-field electroretinography (full-field ERG), multifocal electroretinography (mfERG) and optical coherence tomography (OCT). Genomic DNA was screened for mutation in the BEST1 gene by DNA sequencing analysis. RESULTS: The proband was observed regularly during a follow-up period of 4 years. Full-field ERG demonstrated reduced and delayed responses of both rods and cones. OCT demonstrated intra- and subretinal fluid which seemed to fluctuate with periods of stress, similar to that seen in chronic central serous chorioretinopathy. Two distinct heterozygous BEST1 mutations were identified in the proband, the recurrent p.R141H mutation and the p.P233A mutation. Heterozygous p.R141H mutations were also identified in two family members, while p.P233A was a de novo mutation. Abnormal EOG findings were observed in both the proband and in the carriers of p.R141H. Heterozygous carriers showed delayed implicit times in a- and b-waves of combined total rod and cone full-field ERG responses. CONCLUSIONS: The p.R141H mutation is frequently seen together with multifocal vitelliform retinopathy and biallelic mutations in BEST1. Our results show that carriers of the p.R141H mutation are clinically unaffected but present with abnormal EOG and full-field ERG findings. A patient with biallelic mutations of the BEST1 gene, causing multifocal BVMD with progressive, widespread functional disturbance of the retina, confirmed by full-field and mfERG is described.


Assuntos
Canais de Cloreto/genética , Proteínas do Olho/genética , Mutação , Retina/fisiopatologia , Distrofia Macular Viteliforme/fisiopatologia , Adolescente , Bestrofinas , Análise Mutacional de DNA , Eletroculografia , Eletrorretinografia , Feminino , Genótipo , Humanos , Masculino , Linhagem , Fenótipo , Análise de Sequência de DNA , Tomografia de Coerência Óptica , Distrofia Macular Viteliforme/genética
11.
Eur J Med Genet ; 53(3): 117-21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20302979

RESUMO

The RAS-MAPK syndromes are a group of clinically and genetically related disorders caused by dysregulation of the RAS-MAPK pathway. A member of this group of disorders, Noonan syndrome (NS), is associated with several different genes within the RAS-MAPK pathway. To date, mutations in PTPN11, SOS1, KRAS, RAF1 and SHOC2 are known to cause NS and a small group of patients harbour mutations in BRAF, MEK1 or NRAS. The majority of the mutations are predicted to cause an up-regulation of the pathway; hence they are gain-of-function mutations. Despite recent advances in gene identification in NS, the genetic aetiology is still unknown in about 1/4 of patients. To investigate the contribution of gene dosage imbalances of RAS-MAPK-related genes to the pathogenesis of NS, a multiplex ligation-dependent probe amplification (MLPA) assay was developed. Two probe sets were designed for seven RAS-MAPK-syndrome-related candidate genes: PTPN11, SOS1, RAF1, KRAS, BRAF, MEK1 and MEK2. The probe sets were validated in 15 healthy control individuals and in glioma tumour cell lines. Subsequently, 44 NS patients negative for mutations in known NS-associated genes were screened using the two probe sets. The MLPA results for the patients revealed no gene dosage imbalances. In conclusion, the present results exclude copy number variation of PTPN11, SOS1, RAF1, KRAS, BRAF, MEK1 and MEK2 as a common pathogenic mechanism of NS. The validated and optimised RAS-MAPK probe sets presented here enable rapid high throughput screening of further patients with RAS-MAPK syndromes.


Assuntos
Mutação , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Reação em Cadeia da Polimerase/métodos , Linhagem Celular Tumoral , Análise Mutacional de DNA , Éxons , Feminino , Deleção de Genes , Dosagem de Genes , Predisposição Genética para Doença , Glioma/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Sondas de Oligonucleotídeos/genética , Regulação para Cima
12.
Acta Paediatr ; 98(4): 693-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19120036

RESUMO

AIM: The clinical overlap among Noonan syndrome (NS), cardio-facio-cutaneous (CFC), LEOPARD and Costello syndromes as well as Neurofibromatosis type 1 is extensive, which complicates the process of diagnosis. Further genotype-phenotype correlations are required to facilitate future diagnosis of these patients. Therefore, investigations of the genetic cause of a severe phenotype in a patient with NS and the presence of multiple café-au-lait spots (CAL) spots in the patient and four members of the family were performed. METHODS: Mutation analyses of candidate genes, PTPN11, NF1, SPRED1 and SPRED2, associated with these syndromes, were conducted using DNA sequencing. RESULTS: A previously identified de novo mutation, PTPN11 F285L and an inherited NF1 R1809C substitution in the index patient were found. However, neither PTPN11 F285L, NF1 R1809C, SPRED1 nor SPRED2 segregated with CAL spots in the family. The results indicate that the familial CAL spots trait in this family is caused by a mutation in another gene, distinct from previous genes associated with CAL spots in these syndromes. CONCLUSION: We suggest that the atypical severe symptoms in the index patient may be caused by an additive effect on the F285L mutation in PTPN11 by another mutation, for example the NF1 R1809C or alternatively, the not yet identified gene mutation associated with CAL spots in this family.


Assuntos
Manchas Café com Leite/genética , Genes da Neurofibromatose 1 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Repressoras/genética , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Análise Mutacional de DNA , Família , Feminino , Ligação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Mutação , Síndrome de Noonan/diagnóstico , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...