Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Brain Sci ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38928576

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and restricted and repetitive behaviors. Oxidative stress may be a critical link between mitochondrial dysfunction and ASD as reactive oxygen species (ROS) generated from pro-oxidant environmental toxicants and activated immune cells can result in mitochondrial failure. Recently, mitochondrial dysfunction, autoimmunity, and abnormal lipid mediators have been identified in multiple investigations as an acknowledged etiological mechanism of ASD that can be targeted for therapeutic intervention. METHODS: The relationship between lipid mediator markers linked to inflammation induction, such as phospholipase A2/cyclooxygenase-2 (PLA2/Cox-2), and the mitochondrial dysfunction marker anti-mitochondrial antibodies (AMA-M2), and anti-histone autoantibodies in the etiology of ASD was investigated in this study using combined receiver operating characteristic (ROC) curve analyses. This study also sought to identify the linear combination for a given set of markers that optimizes the partial area under ROC curves. This study included 40 age- and sex-matched controls and 40 ASD youngsters. The plasma of both groups was tested for PLA2/COX-2, AMA-M2, and anti-histone autoantibodies' levels using ELISA kits. ROC curves and logistic regression models were used in the statistical analysis. RESULTS: Using the integrated ROC curve analysis, a notable rise in the area under the curve was noticed. Additionally, the combined markers had markedly improved specificity and sensitivity. CONCLUSIONS: The current study suggested that measuring the predictive value of selected biomarkers related to mitochondrial dysfunction, autoimmunity, and lipid metabolism in children with ASD using a ROC curve analysis could lead to a better understanding of the etiological mechanism of ASD as well as its relationship with metabolism.

2.
Nutrients ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960217

RESUMO

Special diets or nutritional supplements are regularly given to treat children with autism spectrum disorder (ASD). The increased consumption of particular foods has been demonstrated in numerous trials to lessen autism-related symptoms and comorbidities. A case study on a boy with moderate autism who significantly improved after three years of following a healthy diet consisting of pumpkin and walnuts was examined in this review in connection to a few different neurophenotypes of ASD. We are able to suggest that a diet high in pumpkin and walnuts was useful in improving the clinical presentation of the ASD case evaluated by reducing oxidative stress, neuroinflammation, glutamate excitotoxicity, mitochondrial dysfunction, and altered gut microbiota, all of which are etiological variables. Using illustrated figures, a full description of the ways by which a diet high in pumpkin and nuts could assist the included case is offered.


Assuntos
Transtorno do Espectro Autista , Cucurbita , Juglans , Masculino , Criança , Humanos , Nozes , Dieta
3.
Brain Sci ; 13(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002535

RESUMO

According to previous research, individuals with autism spectrum disorder (ASD) have lower levels of physical activity than their typically developed (TD) counterparts. There have been conflicting reports about physical activity (PA) levels in people with ASD. Given the conflicting evidence, further investigation is required. We believe that evaluating PA in individuals with ASD is critical in order to offer PA intervention plans aiming at increasing their health-related physical fitness on a daily, systematic, and individualized basis. In the current study, an ActiGraph monitor (GT3X+) was used to accurately measure PA and sedentary activity in 21 children with autism aged 6.43 ± 2.29 years and 30 TD children aged 7.2 ± 3.14 years. Our data indicated that while the light and moderate activity counts were not significantly different between the two groups, the vigorous activity was significantly higher in ASD compared to TD. This finding was attributed to ASD characteristic stereotypy and self-stimulating behaviors. The significantly higher vigorous PA is discussed in relation to altered neurochemistry, oxidative stress, and neuroinflammation as etiological mechanisms in ASD. This research provides a better understanding of the status of PA participation in individuals with ASD.

4.
Curr Med Chem ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031776

RESUMO

Numerous studies demonstrated that the number of children with autism spectrum disorder (ASD) has increased remarkably in the past decade. A portion of ASD etiology, however, is attributed to environmental issues and genetic disorders. We highlighted a scoping review to principally evaluate the current information on mercury exposure in ASD children and to reveal knowledge gaps. Elevated porphyrins concentration in the urinary system related to mercury exposure, such as precoproporphyrin (prcP), coproporphyrin (cP), and pentacarboxyporphyrin (5cxP), was shown in comparison with controls. Moreover, high levels of urinary porphyrins have been elevated in response to heavy metal exposure. The related pattern (increased prcP, cP, and 5cxP) with Hg exposure may be used as biomarkers in the characteristics of ASD symptoms. However, this review highlighted the data gaps because the control groups were not genderand age-matched for ASD children.

5.
Biomolecules ; 13(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37759705

RESUMO

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that causes multi-articular synovitis. The illness is characterized by worsening inflammatory synovitis, which causes joint swelling and pain. Synovitis erodes articular cartilage and marginal bone, resulting in joint deterioration. This bone injury is expected to be permanent. Cytokines play a prominent role in the etiology of RA and could be useful as early diagnostic biomarkers. This research was carried out at Riyadh's King Khalid University Hospital (KKUH). Patients were enrolled from the Rheumatology unit. Seventy-eight RA patients were recruited (67 (85.9%) females and 11 (14.1%) males). Patients were selected for participation by convenience sampling. Demographic data were collected, and disease activity measurements at 28 joints were recorded using the disease activity score (DAS-28). Age- and sex-matched controls from the general population were included in the study. A panel of 27 cytokines, chemokines, and growth factors was determined in patient and control sera. Binary logistic regression (BLR) and discriminant analysis (DA) were used to analyze the data. We show that multiple cytokine biomarker profiles successfully distinguished RA patients from healthy controls. IL-17, IL-4, and RANTES were among the most predictive variables and were the only biomarkers incorporated into both BLR and DA predictive models for pooled participants (men and women). In the women-only models, the significant cytokines incorporated in the model were IL-4, IL-17, MIP-1b, and RANTES for the BLR model and IL-4, IL-1Ra, GM-CSF, IL-17, and eotaxin for the DA model. The BLR and DA men-only models contained one cytokine each, eotaxin for BLR and platelet-derived growth factor-bb (PDGF-BB) for DA. We show that BLR has a higher fidelity in identifying RA patients than DA. We also found that the use of gender-specific models marginally improves detection fidelity, indicating a possible benefit in clinical diagnosis. More research is needed to determine whether this conclusion will hold true in various and larger patient populations.

6.
PeerJ ; 11: e15488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334116

RESUMO

Background: Males are more likely to develop autism as a neurodevelopmental disorder than females are, although the mechanisms underlying male vulnerability are not fully understood. Therefore, studying the role of autism etiologies considering sex differences in the propionic acid (PPA) rodent model of autism would build greater understanding of how females are protected from autism spectrum disorder, which may be used as a treatment strategy for males with autism. Objectives: This study aimed to investigate the sex differences in oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut microbiota impairment as etiological mechanisms for many neurological diseases, with specific reference to autism. Method: Forty albino mice were divided into four groups of 10 animals each with two control and two treated groups of both sexes received only phosphate-buffered saline or a neurotoxic dose of PPA (250 mg/kg body weight) for 3 days, respectively. Biochemical markers of energy metabolism, oxidative stress, neuroinflammation, and excitotoxicity were measured in mouse brain homogenates, whereas the presence of pathogenic bacteria was assessed in mouse stool samples. Furthermore, the repetitive behavior, cognitive ability, and physical-neural coordination of the animals were examined. Results: Collectively, selected variables related to oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut bacteria were impaired concomitantly with altered behavior in PPA-induced rodent model, with males being more susceptible than females. Conclusion: This study explains the role of sex in the higher vulnerability of males to develop autistic biochemical and behavioral features compared with females. Female sex hormones and the higher detoxification capacity and higher glycolytic flux in females serve as neuroprotective contributors in a rodent model of autism.


Assuntos
Transtorno do Espectro Autista , Feminino , Animais , Masculino , Camundongos , Transtorno do Espectro Autista/induzido quimicamente , Roedores/metabolismo , Caracteres Sexuais , Doenças Neuroinflamatórias , Ácido Glutâmico/metabolismo
7.
Sci Rep ; 13(1): 9747, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328585

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social, stereotypical, and repetitive behaviors. Neural dysregulation was proposed as an etiological factor in ASD. The sodium leakage channel (NCA), regulated by NLF-1 (NCA localization factor-1), has a major role in maintaining the physiological excitatory function of neurons. We aimed to examine the level of NLF-1 in ASD children and correlate it with the severity of the disease. We examined the plasma levels of NLF-1 in 80 ASD and neurotypical children using ELISA. The diagnosis and severity of ASD were based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), Childhood Autism Rating Score, Social Responsiveness Scale, and Short Sensory Profile. Then, we compared the levels of NLF-1 with the severity of the disease and behavioral and sensory symptoms. Our results showed a significant decrease in the plasma levels of NLF-1 in ASD children compared to neurotypical children (p < 0.001). Additionally, NLF-1 was significantly correlated with the severity of the behavioral symptoms of ASD (p < 0.05). The low levels of NLF-1 in ASD children potentially affect the severity of their behavioral symptoms by reducing neuron excitability through NCA. These novel findings open a new venue for pharmacological and possible genetic research involving NCA in ASD children.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Transtorno do Espectro Autista/diagnóstico , Cognição/fisiologia , Comportamento Estereotipado , Sódio
8.
Brain Sci ; 13(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37371450

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) encompasses a group of disorders characterized by difficulties with social interaction and repetitive behavior. The condition is supposed to originate from early shifts in brain development, while the underlying processes are unknown. Moreover, a considerable number of patients with ASD experience digestive difficulties. Metalloproteases (ADAMs) are a class of enzymes capable of cleaving membrane-bound proteins. Members of this family, ADAM17 and ADAM22, have the ability to cleave proteins like the pro-inflammatory cytokine TNF-ά and glutamate synaptic molecules, which are both engaged in neuro-inflammation and glutamate excitotoxicity as crucial etiological mechanisms in ASD. ADAM17 and ADAM22 may also have a role in ASD microbiota-gut-brain axis connections by regulating immunological and inflammatory responses in the intestinal tract. SUBJECTS AND METHODS: Using ELISA kits, the plasma levels of ADAM17 and ADAM22 were compared in 40 children with ASD and 40 typically developing children. All of the autistic participants' childhood autism rating scores (CARS), social responsiveness scales (SRS), and short sensory profiles (SSP) were evaluated as indicators of ASD severity. RESULTS: Our results showed that plasma levels of ADAM17 were significantly lower in ASD children than in control children, while ADAM22 demonstrated non-significantly lower levels. Our data also indicate that while ADAM17 correlates significantly with age, ADAM22 correlates significantly with CARS as a marker of ASD severity. CONCLUSIONS: Our interpreted data showed that alteration in ADAM17 and ADAM22 might be associated with glutamate excitotoxicity, neuroinflammation, and altered gut microbiota as etiological mechanisms of ASD and could be an indicator of the severity of the disorder.

9.
Metabolites ; 13(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37367896

RESUMO

Since there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in dietary treatments, no harmony exists with regard to the ideal nutritional therapy. To better direct prevention and intervention measures for ASD, the identification of risk and protective factors is required. Through the use of a rat model, our study aims to assess the possible danger of exposure to neurotoxic doses of propionic acid (PPA) and the nutritional protective effects of prebiotics and probiotics. Here, we conducted a biochemical assessment of the effects of dietary supplement therapy in the PPA model of autism. We used 36 male Sprague Dawley albino rat pups divided into six groups. Standard food and drink were given to the control group. The PPA-induced ASD model was the second group; it was fed a conventional diet for 27 days before receiving 250 mg/kg of PPA orally for three days. The four other groups were given 3 mL/kg of yoghurt daily, 400 mg/Kg of artichokes daily, 50 mg/kg of luteolin daily and Lacticaseibacillus rhamnosus GG at 0.2 mL daily for 27 days before being given PPA (250 mg/kg BW) for three days along with their normal diet. All groups had their brain homogenates tested for biochemical markers, which included gamma-aminobutyric acid (GABA), glutathione peroxidase 1 (GPX1), glutathione (GSH), interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF). When compared with the control group, the PPA-induced model presented increased oxidative stress and neuroinflammation but groups treated with all four dietary therapies presented improvements in biochemical characteristics for oxidative stress and neuroinflammation. As all of the therapies show sufficient anti-inflammatory and antioxidant effects, they can be used as a useful dietary component to help prevent ASD.

10.
Drug Dev Res ; 84(6): 1299-1319, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357422

RESUMO

New series of 20 thieno[2,3-d]pyrimidine derivatives have been synthesized. The National Cancer Institute evaluated all the newly synthesized compounds for their antiproliferative activity against a panel of 60 cancer cell lines. Compound 7b exhibited a remarkable antineoplastic activity at 10 µM dose and was therefore tested at five dose concentrations. The significant and broad-spectrum antineoplastic action of compound 7b was observed against 37 of the tested cancer cell lines with a dose that inhibits 50% of the growth compared to control values in the micromolar range of 1.95-9.6 µM. The dose which inhibits the growth completely in the cytostatic range of 3.99-100 µM was also observed. Compound 7b effectively inhibited epidermal growth factor receptor (EGFR) with 50% inhibition concentration value (IC50 ) = 0.096 ± 0.004 compared to erlotinib with IC50 = 0.037 ± 0.002. Moreover, compound 7b revealed a powerful downregulation effect on total EGFR concentration and its phosphorylation. In addition, compound 7b inhibited phosphatidylinositol 3-kinase, protein kinase B, and the mammalian target of rapamycin pathway phosphorylation. Furthermore, compound 7b raised total apoptosis by 21.93-fold in the ovarian cancer cell line (OVCAR-4) and caused an arrest in the cell cycle in the G1/S phase. It also raised the level of caspase-3 by 4.72-fold. Furthermore, to determine the binding manner of the most effective derivatives and validate their capacity to comply with the pharmacophoric properties necessary for EGFR inhibition, they were docked into the active site of the EGFR.


Assuntos
Antineoplásicos , Receptores ErbB , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Pirimidinas/química , Inibidores de Proteínas Quinases/farmacologia , Simulação de Acoplamento Molecular
11.
Curr Issues Mol Biol ; 45(5): 4317-4330, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232743

RESUMO

Considerable disturbances in post-translational protein phosphorylation have recently been discovered in multiple neurological disorders. Casein kinase-2 (CK2) is a tetrameric Ser/Thr protein kinase that phosphorylates a large number of substrates and contributes in several cellular physiological and pathological processes. CK2 is highly expressed in the mammalian brain and catalyzes the phosphorylation of a large number of substrates that are crucial in neuronal or glial homeostasis and inflammatory signaling processes across synapses. In this study, we investigated the impact of auditory integration therapy (AIT) for the treatment of sensory processing abnormalities in autism on plasma CK2 levels. A total of 25 ASD children, aged between 5 and 12 years, were enrolled and participated in the present research study. AIT was performed for two weeks, for a period of 30 min, twice a day, with a 3 h interval between sessions. Before and after AIT, the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma CK2 levels were assayed using an ELISA test. The CARS and SRS indices of autism severity improved as a result of AIT, which could be related to the decreased level of plasma CK2. However, the mean value of the SSP scores was not significantly increased after AIT. The relationship between CK2 downregulation and glutamate excitotoxicity, neuro-inflammation, and leaky gut, as etiological mechanisms in ASD, was proposed and discussed. Further research, conducted on a larger scale and with a longer study duration, are required to assess whether the cognitive improvement in ASD children after AIT is related to the downregulation of CK2.

12.
Metabolites ; 13(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37110156

RESUMO

Autism spectrum disorder (ASD) is a progressively prevalent neurodevelopmental disorder with substantial clinical heterogeneity. Despite the considerable interest in dietary interventions, no consensus has been reached regarding the optimal nutritional therapy. The present study aimed to investigate the possible positive effect of goat's milk (GM) compared to cow's milk (CM) on ASD autistic features in a valproic acid (VPA; 600 mg/kg)-induced white albino rat model of autism. All tests were conducted on rats that were divided into four groups (n = 15/group): control with goat milk (GM) treatment, control with cow milk (CM) treatment, autistic with goat milk (GM) treatment, and autistic with cow milk treatment. The casein levels were also measured in GM and CM. Social behavior was assessed by three-chambered sociability to test social interaction after the intervention. After 15 days of intervention, selected biomarkers, such as glutathione (GSH), thiobarbituric acid reactive substance (TBARS), interleukin-6 (IL-6), neurotransmitter dopamine (DA), serotonin (5-hydroxytryptamine, 5-HT), and glutamate (GLU), were measured in blood serum and brain homogenates. The results showed a significant positive effect on social interaction in the VPA rat ASD model fed GM. Blood serum and brain samples showed a positive increase in TBARS in the VPA rat model fed GM, but brain and serum serotonin levels were lower in both VPA-GM and VPA-CM groups. Dopamine in serum was also lower in the VPA-CM group than in the VPA-GM group. IL-6 levels were slightly lower in the VPA-GM group than in the VPA-CM group. In comparison with cow's milk, goat's milk was effective in ameliorating the neurotoxic effects of VPA. Goat's milk may be considered a suitable source of dairy for children diagnosed with ASD. Autistic children with allergies to cow's milk could possibly convert to goat's milk. Nevertheless, more in-depth studies and clinical trials are recommended.

13.
Metabolites ; 13(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110206

RESUMO

Rodent models may help investigations on the possible link between autism spectrum disorder (ASD) and gut microbiota since autistic patients frequently manifested gastrointestinal troubles as co-morbidities. Thirty young male rats were divided into five groups: Group 1 serves as control; Group 2, bee pollen and probiotic-treated; and Group 3, propionic acid (PPA)-induced rodent model of autism; Group 4 and Group 5, the protective and therapeutic groups were given bee pollen and probiotic combination treatment either before or after the neurotoxic dose of PPA, respectively. Serum occludin, zonulin, lipid peroxides (MDA), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPX), catalase, and gut microbial composition were assessed in all investigated groups. Recorded data clearly indicated the marked elevation in serum occludin (1.23 ± 0.15 ng/mL) and zonulin (1.91 ± 0.13 ng/mL) levels as potent biomarkers of leaky gut in the PPA- treated rats while both were normalized to bee pollen/probiotic-treated rats. Similarly, the high significant decrease in catalase (3.55 ± 0.34 U/dL), GSH (39.68 ± 3.72 µg/mL), GST (29.85 ± 2.18 U/mL), and GPX (13.39 ± 1.54 U/mL) concomitant with a highly significant increase in MDA (3.41 ± 0.12 µmoles/mL) as a marker of oxidative stress was also observed in PPA-treated animals. Interestingly, combined bee pollen/probiotic treatments demonstrated remarkable amelioration of the five studied oxidative stress variables as well as the fecal microbial composition. Overall, our findings demonstrated a new approach to the beneficial use of bee pollen and probiotic combination as a therapeutic intervention strategy to relieve neurotoxic effects of PPA, a short-chain fatty acid linked to the pathoetiology of autism.

14.
Metabolites ; 13(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837929

RESUMO

The mechanisms underlying selective serotonin reuptake inhibitor (SSRI) use during pregnancy as a major autism risk factor are unclear. Here, brain neurochemical changes following fluoxetine exposure and in an autism model were compared to determine the effects on autism risk. The study was performed on neonatal male western albino rats which were divided into Groups one (control), two (propionic acid [PPA]-induced autism model), and three (prenatal SSRI-exposed newborn rats whose mothers were exposed to 5 mg/kg of fluoxetine over gestation days 10-20). SSRI (fluoxetine) induced significant neurochemical abnormalities in the rat brain by increasing lipid peroxide (MDA), Interferon-gamma (IFN-γ), and caspase-3 levels and by depleting Glutathione (GSH), Glutathione S-transferases (GST), Catalase, potassium (K+), and Creatine kinase (CK) levels, similarly to what has been discovered in the PPA model of autism when compared with control. Prenatal fluoxetine exposure plays a significant role in asset brain damage in newborns; further investigation of fluoxetine as an autism risk factor is thus warranted.

15.
Saudi Dent J ; 35(1): 24-30, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36817025

RESUMO

The gut mucosa is an extension of the oral mucosa, and both are directly linked. There is emerging evidence that pathogenic oral microbiome contributes greatly to the risk of developing Inflammatory Bowel Disease (IBD). Dysbiosis of the oral microbiota can interfere with the host immune system's ability to respond normally, thereby increasing the development of periodontitis which raises the risk of IBD, cancer, rheumatoid arthritis, cardiovascular disease, and other complex disease processes. Salivary biomarkers are possibly important for determining the incidence, severity, and remission of IBD. Nevertheless, clinical translation of biomarker knowledge from lab to clinical practice needs further studies that identify biomarkers related to the transitional phase between healthy and unhealthy. In this review, the bidirectional pathway between the gut and the oral cavity was investigated and several aspects were discussed.

16.
Nutrients ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678232

RESUMO

Obesity prevalence is rising globally, as are the number of chronic disorders connected with obesity, such as diabetes, non-alcoholic fatty liver disease, dyslipidemia, and hypertension. Bariatric surgery is also becoming more common, and it remains the most effective and long-term treatment for obesity. This study will assess the influence of Laparoscopic Sleeve Gastrectomy (LSG) on gut microbiota in people with obesity before and after surgery. The findings shed new light on the changes in gut microbiota in Saudi people with obesity following LSG. In conclusion, LSG may improve the metabolic profile, resulting in decreased fat mass and increased lean mass, as well as improving the microbial composition balance in the gastrointestinal tract, but this is still not equivalent to normal weight microbiology. A range of factors, including patient characteristics, geographic dispersion, type of operation, technique, and nutritional and caloric restriction, could explain differences in abundance between studies. This information could point to a novel and, most likely, tailored strategy in obesity therapy, which could eventually be incorporated into health evaluations and monitoring in preventive health care or clinical medicine.


Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal , Laparoscopia , Obesidade Mórbida , Humanos , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , Obesidade/complicações , Obesidade/cirurgia , Cirurgia Bariátrica/métodos , Laparoscopia/métodos , Resultado do Tratamento
18.
Nutrients ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364892

RESUMO

This study aims to explore the effects of Garcinia mangostana (mangosteen) and Curcuma longa independently and synergistically in modulating induced inflammation and impaired brain neurotransmitters commonly observed in high-fat diet-induced obesity in rodent models. Male albino Wistar rats were divided into four experimental groups. Group I, control, obese, fed on a high-fat diet (HFD), and Group II-IV, fed on HFD then given mangosteen extract (400 mg/kg/day) and/or Curcuma (80 mg/kg/day), or a mixture of both for 6 weeks. Plasma pro-inflammatory cytokines, leptin, and brain serotonin, dopamine, and glutamate were measured in the five studied groups. G. mangostana and Curcuma longa extracts demonstrate antioxidant and DPPH radical scavenging activities. Both induced a significant reduction in the weight gained, concomitant with a non-significant decrease in the BMI (from 0.86 to 0.81 g/cm2). Curcuma either alone or in combination with MPE was more effective. Both extracts demonstrated anti-inflammatory effects and induced a significant reduction in levels of both IL-6 and IL-12. The lowest leptin level was achieved in the synergistically treated group, compared to independent treatments. Brain dopamine was the most affected variable, with significantly lower levels recorded in the Curcuma and synergistically treated groups than in the control group. Glutamate and serotonin levels were not affected significantly. The present study demonstrated that mangosteen pericarp extract (MPE) and Curcuma were independently and in combination effective in treating obesity-induced inflammation and demonstrating neuroprotective properties.


Assuntos
Garcinia mangostana , Animais , Masculino , Ratos , Encéfalo , Curcuma , Dieta Hiperlipídica , Dopamina , Garcinia mangostana/química , Glutamatos , Inflamação/tratamento farmacológico , Leptina , Neurotransmissores , Obesidade/tratamento farmacológico , Obesidade/etiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos Wistar , Serotonina
19.
Metabolites ; 12(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36295814

RESUMO

Increasing numbers of patients who recover from COVID-19 report lasting symptoms, such as fatigue, muscle weakness, dementia, and insomnia, known collectively as post-acute COVID syndrome or long COVID. These lasting symptoms have been examined in different studies and found to influence multiple organs, sometimes resulting in life-threating conditions. In this review, these symptoms are discussed in connection to the COVID-19 and long-COVID-19 immune changes, highlighting oral and psychiatric health, as this work focuses on the gut microbiota's link to long-COVID-19 manifestations in the liver, heart, kidney, brain, and spleen. A model of this is presented to show the biological and clinical implications of gut microbiota in SARS-CoV-2 infection and how they could possibly affect the therapeutic aspects of the disease. Probiotics can support the body's systems in fighting viral infections. This review focuses on current knowledge about the use of probiotics as adjuvant therapies for COVID-19 patients that might help to prevent long-COVID-19 complications.

20.
Transl Neurosci ; 13(1): 292-300, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133749

RESUMO

This study aimed to evaluate the protective and therapeutic potency of bee pollen and probiotic mixture on brain intoxication caused by propionic acid (PPA) in juvenile rats. Five groups of six animals each, were used: the control group only receiving phosphate-buffered saline; the bee pollen and probiotic-treated group receiving a combination of an equal quantity of bee pollen and probiotic (0.2 kg/kg body weight); the PPA group being treated for 3 days with an oral neurotoxic dose of PPA (0.25 kg/kg body weight); the protective and therapeutic groups receiving bee pollen and probiotic mixture treatment right before and after the neurotoxic dose of PPA, respectively. The levels of interleukin (IL)-1ß, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor α, and interferon γ (IFN-γ) were investigated to evaluate the neuroinflammatory responses in brain tissues from different animal groups. The much higher IL-1ß, IL-8, and IFN-γ, as pro-inflammatory cytokines (P < 0.001), together with much lower IL-10, as anti-inflammatory cytokine (P < 0.001) compared to controls clearly demonstrated the neurotoxic effects of PPA. Interestingly, the mixture of bee pollen and probiotics was effective in alleviating PPA neurotoxic effects in both therapeutic and protective groups demonstrating highly significant changes in IL-1ß, IL-8, IL-10, and IFN-γ levels together with non-significant reduction in IL-6 levels compared to PPA-treated rats. Overall, our findings demonstrated a new approach to the beneficial use of psychobiotics presenting as bee pollen and probiotic combination in neuroinflammation through cytokine changes as a possible role of glial cells in gut-brain axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...