Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(18): 2881-2898.e12, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37442131

RESUMO

In the adult mammalian central nervous system (CNS), axons fail to regenerate spontaneously after injury because of a combination of extrinsic and intrinsic factors. Despite recent advances targeting the intrinsic regenerative properties of adult neurons, the molecular mechanisms underlying axon regeneration are not fully understood. Here, we uncover a regulatory mechanism that controls the expression of key proteins involved in regeneration at the translational level. Our results show that mRNA-specific translation is critical for promoting axon regeneration. Indeed, we demonstrate that specific ribosome-interacting proteins, such as the protein Huntingtin (HTT), selectively control the translation of a specific subset of mRNAs. Moreover, modulating the expression of these translationally regulated mRNAs is crucial for promoting axon regeneration. Altogether, our findings highlight that selective translation through the customization of the translational complex is a key mechanism of axon regeneration with major implications in the development of therapeutic strategies for CNS repair.


Assuntos
Axônios , Regeneração Nervosa , Animais , Axônios/metabolismo , Regeneração Nervosa/genética , Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/metabolismo
2.
Biochim Biophys Acta ; 1794(4): 680-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19336040

RESUMO

Human paraoxonase-1 (HuPON1) is the ideal candidate to engineer as catalytic bioscavenger for pre-treatment and therapy of exposure to toxic organophosphorus compounds. HuPON1 is a naturally-occurring hydrophobic plasma protein associated with a partner, the human phosphate binding protein (HPBP) on high density lipoproteins. The relationships between the composition and the size of multimeric states of HuPON1 are not well understood. Moreover, the effect of HPBP's presence on enzyme catalysis and stability is not clear. The effect of hydrostatic pressure on structural stability and activity of different PON1 preparations (free natural HuPON1 or in the presence of 50% w/w HPBP, hybrid recombinant PON1) was investigated. Results showed that PON1 exists under several multimeric forms, and that the binding of HPBP amends the size of the hetero-oligomeric states and exerts a stabilizing effect on the activities of PON1. Furthermore, high pressure kinetic experiments highlighted the fact that PON1 displays two distinct catalytic behaviors: the first one for arylesterase and lactonase activities and the second one for its organophosphate-hydrolase activity.


Assuntos
Arildialquilfosfatase/química , Arildialquilfosfatase/metabolismo , Multimerização Proteica , Eletroforese Capilar , Humanos , Pressão Hidrostática , Cinética , Ligação Proteica , Estabilidade Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...