Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BJU Int ; 130(6): 786-798, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35484960

RESUMO

OBJECTIVE: To assess the potential of automated machine-learning methods for recognizing urinary stones in endoscopy. MATERIALS AND METHODS: Surface and section images of 123 urinary calculi (109 ex vivo and 14 in vivo stones) were acquired using ureteroscopes. The stones were more than 85% 'pure'. Six classes of urolithiasis were represented: Groups I (calcium oxalate monohydrate, whewellite), II (calcium oxalate dihydrate, weddellite), III (uric acid), IV (brushite and struvite stones), and V (cystine). The automated stone recognition methods that were developed for this study followed two types of approach: shallow classification methods and deep-learning-based methods. Their sensitivity, specificity and positive predictive value (PPV) were evaluated by simultaneously using stone surface and section images to classify them into one of the main morphological groups (subgroups were not considered in this study). RESULTS: Using shallow methods (based on texture and colour criteria), relatively high sensitivity, specificity and PPV for the six classes were attained: 91%, 90% and 89%, respectively, for whewellite; 99%, 98% and 99% for weddellite; 88%, 89% and 88% for uric acid; 91%, 89% and 90% for struvite; 99%, 99% and 99% for cystine; and 94%, 98% and 99% for brushite. Using deep-learning methods, the sensitivity, specificity and PPV for each of the classes were as follows: 99%, 98% and 97% for whewellite; 98%, 98% and 98% for weddellite; 97%, 98% and 98% for uric acid; 97%, 97% and 96% for struvite; 99%, 99% and 99% for cystine; and 94%, 97% and 98% for brushite. CONCLUSION: Endoscopic stone recognition is challenging, and few urologists have sufficient expertise to achieve a diagnosis performance comparable to morpho-constitutional analysis. This work is a proof of concept that artificial intelligence could be a solution, with promising results achieved for pure stones. Further studies on a larger panel of stones (pure and mixed) are needed to further develop these methods.


Assuntos
Ácido Úrico , Cálculos Urinários , Humanos , Estruvita , Cistina , Inteligência Artificial , Cálculos Urinários/diagnóstico
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1936-1939, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018381

RESUMO

Urolithiasis is a common disease around the world and its incidence has been growing every year. There are various diagnosis techniques based on kidney stone identification aiming to find the formation cause. However, most of them are time consuming, tedious and expensive. The accuracy of the diagnosis is crucial for the prescription of an appropriate treatment that can eliminate the stones and diminish future relapses. This paper presents two effective supervised learning methods to automate and improve the accuracy of the classification of kidney stones; as well as a dataset consisting of kidney stone images captured with ureteroscopes. In the proposed methods, the image features that are visually exploited by urologists to distinguish the type of kidney stones are analyzed and encoded as vectors. Then, the classification is performed on these feature vectors through Random Forest and ensemble K Nearest Neighbor classifiers. The overall classification accuracy obtained was 89%, outperforming previous methods by more than 10%. The details of the classifier implementation, as well as their performance and accuracy, are presented and discussed. Finally, future work and improvements are proposed.


Assuntos
Cálculos Renais , Ureteroscopia , Algoritmos , Humanos , Cálculos Renais/diagnóstico por imagem , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...