Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514579

RESUMO

New designs based on S0 Lamb modes in AlN thin layer resonating structures coupled with the implementation of structural elements in SiO2, are theoretically analyzed by the Finite Element Method (FEM). This study compares the typical characteristics of different interdigital transducer (IDTs) configurations, involving either a continuous SiO2 cap layer, or structured SiO2 elements, showing their performance in the usual terms of electromechanical coupling coefficient (K2), phase velocity, and temperature coefficient of frequency (TCF), by varying structural parameters and boundary conditions. This paper shows how to reach temperature-compensated, high-performance resonator structures based on ribbon-structured SiO2 capping. The addition of a thin diamond layer can also improve the velocity and electromechanical coupling coefficient, while keeping zero TCF and increasing the solidity of the membranes. Beyond the increase in performance allowed by such resonator configurations, their inherent structure shows additional benefits in terms of passivation, which makes them particularly relevant for sensing applications in stern environments.

2.
Nanomaterials (Basel) ; 10(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167353

RESUMO

In this paper, we provide a theoretical and numerical study of the acoustic properties of infinite and semi-infinite superlattices made out of graphene-semiconductor bilayers. In addition to the band structure, we emphasize the existence and behavior of localized and resonant acoustic modes associated with the free surface of such structures. These modes are polarized in the sagittal plane, defined by the incident wavevector and the normal to the layers. The surface modes are obtained from the peaks of the density of states, either inside the bulk bands or inside the minigaps of the superlattice. In these structures, the two directions of vibrations (longitudinal and transverse) are coupled giving rise to two bulk bands associated with the two polarizations of the waves. The creation of the free surface of the superlattice induces true surface localized modes inside the terahertz acoustic forbidden gaps, but also pseudo-surface modes which appear as well-defined resonances inside the allowed bands of the superlattice. Despite the low thickness of the graphene layer, and though graphene is a gapless material, when it is inserted periodically in a semiconductor, it allows the opening of wide gaps for all values of the wave vector k// (parallel to the interfaces). Numerical illustrations of the band structures and surface modes are given for graphene-Si superlattices, and the surface layer can be either Si or graphene. These surface acoustic modes can be used to realize liquid or bio-sensors graphene-based phononic crystal operating in the THz frequency domain.

3.
ACS Appl Mater Interfaces ; 7(23): 12488-95, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25855860

RESUMO

We studied experimentally and theoretically the direction-dependent elastic and electromagnetic wave propagation in a supported film of hybrid PMMA (poly[methyl-methacrylate])-TiO2 superlattice (SL). In the direction normal to the layers, this one-dimensional periodic structure opens propagation band gaps for both hypersonic (GHz) phonons and near-UV photons. The high mismatch of elastic and optical impedance results in a large dual phoxonic band gap. The presence of defects inherent to the spin-coating fabrication technique is sensitively manifested in the band gap region. Utilizing Brillouin light scattering, phonon propagation along the layers was observed to be distinctly different from propagation normal to them and can, under certain conditions (SL thickness and substrate elasticity), reveal the nanomechanical properties of the constituent layers. Besides the first realization of unidirectional phoxonic behavior, hybrid (soft-hard) periodic materials are a promising simple platform for opto-acoustic interactions and applications such as filters and Bragg mirrors.

4.
Phys Rev Lett ; 111(16): 164301, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182268

RESUMO

We employ spontaneous Brillouin light scattering spectroscopy and detailed theoretical calculations to reveal and identify elastic excitations inside the band gap of hypersonic hybrid superlattices. Surface and cavity modes, their strength and anticrossing are unambiguously documented and fully controlled by layer thickness, elasticity, and sequence design. This new soft matter based superlattice platform allows facile engineering of the density of states and opens new pathways to tunable phoxonic crystals.

5.
Nano Lett ; 12(7): 3569-73, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22650605

RESUMO

We report the changes in dispersion relations of hypersonic acoustic phonons in free-standing silicon membranes as thin as ∼8 nm. We observe a reduction of the phase and group velocities of the fundamental flexural mode by more than 1 order of magnitude compared to bulk values. The modification of the dispersion relation in nanostructures has important consequences for noise control in nano- and microelectromechanical systems (MEMS/NEMS) as well as opto-mechanical devices.

6.
Nano Lett ; 12(6): 3101-8, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22506610

RESUMO

We report on the full control of phononic band diagrams for periodic stacks of alternating layers of poly(methyl methacrylate) and porous silica combining Brillouin light scattering spectroscopy and theoretical calculations. These structures exhibit large and robust on-axis band gaps determined by the longitudinal sound velocities, densities, and spacing ratio. A facile tuning of the gap width is realized at oblique incidence utilizing the vector nature of the elastic wave propagation. Off-axis propagation involves sagittal waves in the individual layers, allowing access to shear moduli at nanoscale. The full theoretical description discerns the most important features of the hypersonic one-dimensional crystals forward to a detailed understanding, a precondition to engineer dispersion relations in such structures.


Assuntos
Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Refratometria/métodos , Simulação por Computador , Luz , Tamanho da Partícula , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...