Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1078, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540682

RESUMO

As a protective envelope surrounding the bacterial cell, the peptidoglycan sacculus is a site of vulnerability and an antibiotic target. Peptidoglycan components, assembled in the cytoplasm, are shuttled across the membrane in a cycle that uses undecaprenyl-phosphate. A product of peptidoglycan synthesis, undecaprenyl-pyrophosphate, is converted to undecaprenyl-phosphate for reuse in the cycle by the membrane integral pyrophosphatase, BacA. To understand how BacA functions, we determine its crystal structure at 2.6 Å resolution. The enzyme is open to the periplasm and to the periplasmic leaflet via a pocket that extends into the membrane. Conserved residues map to the pocket where pyrophosphorolysis occurs. BacA incorporates an interdigitated inverted topology repeat, a topology type thus far only reported in transporters and channels. This unique topology raises issues regarding the ancestry of BacA, the possibility that BacA has alternate active sites on either side of the membrane and its possible function as a flippase.


Assuntos
Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Pirofosfatases/química , Pirofosfatases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Estrutura Secundária de Proteína
2.
Biochimie ; 127: 249-57, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27312048

RESUMO

The MraY transferase catalyzes the first membrane step of bacterial cell wall peptidoglycan biosynthesis, namely the transfer of the N-acetylmuramoyl-pentapeptide moiety of the cytoplasmic precursor UDP-MurNAc-pentapeptide to the membrane transporter undecaprenyl phosphate (C55P), yielding C55-PP-MurNAc-pentapeptide (lipid I). A paralogue of MraY, WecA, catalyzes the transfer of the phospho-GlcNAc moiety of UDP-N-acetylglucosamine onto the same lipid carrier, leading to the formation of C55-PP-GlcNAc that is essential for the synthesis of various bacterial cell envelope components. These two enzymes are members of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily, which are essential for bacterial envelope biogenesis. Despite the availability of detailed biochemical information on the MraY enzyme, and the recently published crystal structure of MraY of Aquifex aeolicus, the molecular basis for its catalysis remains poorly understood. This knowledge can contribute to the design of potential inhibitors. Here, we report a detailed catalytic study of the Bacillus subtilis MraY and Thermotoga maritima WecA transferases. Both forward and reverse exchange reactions required the presence of the second substrate, C55P and uridine monophosphate (UMP), respectively. Both enzymes did not display any pyrophosphatase activity on the nucleotide substrate. Moreover, we showed that the nucleotide substrate UDP-MurNAc-pentapeptide, as well as the nucleotide product UMP, can bind to MraY in the absence of lipid ligands. Therefore, our data are in favour of a single displacement mechanism. During this "one-step" mechanism, the oxyanion of the polyprenyl-phosphate attacks the ß-phosphate of the nucleotide substrate, leading to the formation of lipid product and the liberation of UMP. The involvement of an invariant aspartyl residue in the deprotonation of the lipid substrate is discussed.


Assuntos
Bacillus subtilis/enzimologia , Biocatálise , Homologia de Sequência de Aminoácidos , Thermotoga maritima/enzimologia , Transferases/metabolismo , Aminas/farmacologia , Metabolismo dos Lipídeos , Especificidade por Substrato , Transferases/antagonistas & inibidores , Transferases/química
3.
PLoS One ; 10(11): e0142870, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26560897

RESUMO

Several integral membrane proteins exhibiting undecaprenyl-pyrophosphate (C55-PP) phosphatase activity were previously identified in Escherichia coli that belonged to two distinct protein families: the BacA protein, which accounts for 75% of the C55-PP phosphatase activity detected in E. coli cell membranes, and three members of the PAP2 phosphatidic acid phosphatase family, namely PgpB, YbjG and LpxT. This dephosphorylation step is required to provide the C55-P carrier lipid which plays a central role in the biosynthesis of various cell wall polymers. We here report detailed investigations of the biochemical properties and membrane topology of the BacA protein. Optimal activity conditions were determined and a narrow-range substrate specificity with a clear preference for C55-PP was observed for this enzyme. Alignments of BacA protein sequences revealed two particularly well-conserved regions and several invariant residues whose role in enzyme activity was questioned by using a site-directed mutagenesis approach and complementary in vitro and in vivo activity assays. Three essential residues Glu21, Ser27, and Arg174 were identified, allowing us to propose a catalytic mechanism for this enzyme. The membrane topology of the BacA protein determined here experimentally did not validate previous program-based predicted models. It comprises seven transmembrane segments and contains in particular two large periplasmic loops carrying the highly-conserved active site residues. Our data thus provide evidence that all the different E. coli C55-PP phosphatases identified to date (BacA and PAP2) catalyze the dephosphorylation of C55-PP molecules on the same (outer) side of the plasma membrane.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/química , Catálise , Membrana Celular/metabolismo , Teste de Complementação Genética , Glutamina/química , Lipídeos/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfatidato Fosfatase/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina/química , Especificidade por Substrato
4.
Cell Host Microbe ; 13(6): 735-45, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23768497

RESUMO

Neisseria meningitidis is a life-threatening human bacterial pathogen responsible for pneumonia, sepsis, and meningitis. Meningococcal strains with reduced susceptibility to penicillin G (Pen(I)) carry a mutated penicillin-binding protein (PBP2) resulting in a modified peptidoglycan structure. Despite their antibiotic resistance, Pen(I) strains have failed to expand clonally. We analyzed the biological consequences of PBP2 alteration among clinical meningococcal strains and found that peptidoglycan modifications of the Pen(I) strain resulted in diminished in vitro Nod1-dependent proinflammatory activity. In an influenza virus-meningococcal sequential mouse model mimicking human disease, wild-type meningococci induced a Nod1-dependent inflammatory response, colonizing the lungs and surviving in the blood. In contrast, isogenic Pen(I) strains were attenuated for such response and were out-competed by meningococci sensitive to penicillin G. Our results suggest that antibiotic resistance imposes a cost to the success of the pathogen and may potentially explain the lack of clonal expansion of Pen(I) strains.


Assuntos
Parede Celular/imunologia , Neisseria meningitidis/patogenicidade , Proteína Adaptadora de Sinalização NOD1/imunologia , Resistência às Penicilinas , Proteínas de Ligação às Penicilinas/genética , Animais , Parede Celular/metabolismo , Humanos , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neisseria meningitidis/efeitos dos fármacos , Neisseria meningitidis/imunologia , Proteínas de Ligação às Penicilinas/metabolismo
5.
PLoS One ; 8(4): e60657, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577140

RESUMO

H. pylori colonizes half of the world's population leading to gastritis, ulcers and gastric cancer. H. pylori strains resistant to antibiotics are increasing which raises the need for alternative therapeutic approaches. Docosahexaenoic acid (DHA) has been shown to decrease H. pylori growth and its associated-inflammation through mechanisms poorly characterized. We aimed to explore DHA action on H. pylori-mediated inflammation and adhesion to gastric epithelial cells (AGS) and also to identify bacterial structures affected by DHA. H. pylori growth and metabolism was assessed in liquid cultures. Bacterial adhesion to AGS cells was visualized by transmission electron microscopy and quantified by an Enzyme Linked Immunosorbent Assay. Inflammatory proteins were assessed by immunoblotting in infected AGS cells, previously treated with DHA. Bacterial total and outer membrane protein composition was analyzed by 2-dimensional gel electrophoresis. Concentrations of 100 µM of DHA decreased H. pylori growth, whereas concentrations higher than 250 µM irreversibly inhibited bacteria survival. DHA reduced ATP production and adhesion to AGS cells. AGS cells infected with DHA pre-treated H. pylori showed a 3-fold reduction in Interleukin-8 (IL-8) production and a decrease of COX2 and iNOS. 2D electrophoresis analysis revealed that DHA changed the expression of H. pylori outer membrane proteins associated with stress response and metabolism and modified bacterial lipopolysaccharide phenotype. As conclusions our results show that DHA anti-H. pylori effects are associated with changes of bacteria morphology and metabolism, and with alteration of outer membrane proteins composition, that ultimately reduce the adhesion of bacteria and the burden of H. pylori-related inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Células Epiteliais/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Estômago/citologia , Anti-Inflamatórios/uso terapêutico , Aderência Bacteriana/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Ácidos Docosa-Hexaenoicos/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Helicobacter pylori/citologia , Helicobacter pylori/crescimento & desenvolvimento , Inflamação/tratamento farmacológico , Inflamação/microbiologia
6.
Biochem Soc Trans ; 40(6): 1522-7, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23176510

RESUMO

Colicins are proteins produced by some strains of Escherichia coli to kill competitors belonging to the same species. Among them, ColM (colicin M) is the only one that blocks the biosynthesis of peptidoglycan, a specific bacterial cell-wall polymer essential for cell integrity. ColM acts in the periplasm by hydrolysing the phosphoester bond of the peptidoglycan lipid intermediate (lipid II). ColM cytotoxicity is dependent on FkpA of the targeted cell, a chaperone with peptidylprolyl cis-trans isomerase activity. Dissection of ColM was used to delineate the catalytic domain and to identify the active-site residues. The in vitro activity of the isolated catalytic domain towards lipid II was 50-fold higher than that of the full-length bacteriocin. Moreover, this domain was bactericidal in the absence of FkpA under conditions that bypass the import mechanism (FhuA-TonB machinery). Thus ColM undergoes a maturation process driven by FkpA that is not required for the activity of the isolated catalytic domain. Genes encoding proteins with similarity to the catalytic domain of ColM were identified in pathogenic strains of Pseudomonas and other genera. ColM acts on several structures of lipid II representative of the diversity of peptidoglycan chemotypes. All together, these data open the way to the potential use of ColM-related bacteriocins as broad spectrum antibacterial agents.


Assuntos
Antibacterianos/metabolismo , Colicinas/metabolismo , Escherichia coli/enzimologia , Peptidoglicano/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Antibiose , Bacteriocinas/química , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Colicinas/química , Colicinas/farmacologia , Humanos , Modelos Moleculares , Conformação Proteica , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
7.
Microb Drug Resist ; 18(3): 222-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22432709

RESUMO

For a long time, colicin M was known for killing susceptible Escherichia coli cells by interfering with cell wall peptidoglycan biosynthesis, but its precise mode of action was only recently elucidated: this bacterial toxin was demonstrated to be an enzyme that catalyzes the specific degradation of peptidoglycan lipid intermediate II, thereby provoking the arrest of peptidoglycan synthesis and cell lysis. The discovery of this activity renewed the interest in this colicin and opened the way for biochemical and structural analyses of this new class of enzyme (phosphoesterase). The identification of a few orthologs produced by pathogenic strains of Pseudomonas further enlarged the field of investigation. The present article aims at reviewing recently acquired knowledge on the biology of this small family of bacteriocins.


Assuntos
Bacteriocinas/metabolismo , Parede Celular/metabolismo , Colicinas/metabolismo , Peptidoglicano/biossíntese , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Bacteriocinas/farmacologia , Parede Celular/química , Colicinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Estrutura Terciária de Proteína , Pseudomonas/genética , Pseudomonas/metabolismo , Especificidade por Substrato , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
8.
PLoS One ; 6(10): e23995, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046231

RESUMO

Neisseria meningitidis is a human pathogen responsible for life-threatening inflammatory diseases. Meningococcal penicillin-binding proteins (PBPs) and particularly PBP2 are involved in bacterial resistance to ß-lactams. Here we describe a novel function for PBP2 that activates human and mouse dendritic cells (DC) in a time and dose-dependent manner. PBP2 induces MHC II (LOGEC50 = 4.7 µg/ml ± 0.1), CD80 (LOGEC50 = 4.88 µg/ml ± 0.15) and CD86 (LOGEC50 = 5.36 µg/ml ± 0.1). This effect was abolished when DCs were co-treated with anti-PBP2 antibodies. PBP2-treated DCs displayed enhanced immunogenic properties in vitro and in vivo. Furthermore, proteins co-purified with PBP2 showed no effect on DC maturation. We show through different in vivo and in vitro approaches that this effect is not due to endotoxin contamination. At the mechanistic level, PBP2 induces nuclear localization of p65 NF-kB of 70.7 ± 5.1% cells versus 12 ± 2.6% in untreated DCs and needs TLR4 expression to mature DCs. Immunoprecipitation and blocking experiments showed thatPBP2 binds TLR4. In conclusion, we describe a novel function of meningococcal PBP2 as a pathogen associated molecular pattern (PAMP) at the host-pathogen interface that could be recognized by the immune system as a danger signal, promoting the development of immune responses.


Assuntos
Células Dendríticas/imunologia , Interações Hospedeiro-Patógeno , Neisseria meningitidis/imunologia , Proteínas de Ligação às Penicilinas/farmacologia , Receptor 4 Toll-Like/imunologia , Animais , Antígeno B7-1/biossíntese , Antígeno B7-2/biossíntese , Células Cultivadas , Células Dendríticas/microbiologia , Relação Dose-Resposta a Droga , Antígenos de Histocompatibilidade Classe II/biossíntese , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Neisseria meningitidis/química
9.
Mol Microbiol ; 82(1): 68-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21801243

RESUMO

The definition of bacterial cell shape is a complex process requiring the participation of multiple components of an intricate macromolecular machinery. We aimed at characterizing the determinants involved in cell shape of the helical bacterium Helicobacter pylori. Using a yeast two-hybrid screen with the key cell elongation protein PBP2 as bait, we identified an interaction between PBP2 and MreC. The minimal region of MreC required for this interaction ranges from amino acids 116 to 226. Using recombinant proteins, we showed by affinity and size exclusion chromatographies and surface plasmon resonance that PBP2 and MreC form a stable complex. In vivo, the two proteins display a similar spatial localization and their complex has an apparent 1:1 stoichiometry; these results were confirmed in vitro by analytical ultracentrifugation and chemical cross-linking. Small angle X-ray scattering analyses of the PBP2 : MreC complex suggest that MreC interacts directly with the C-terminal region of PBP2. Depletion of either PBP2 or MreC leads to transition into spherical cells that lose viability. Finally, the specific expression in trans of the minimal interacting domain of MreC with PBP2 in the periplasmic space leads to cell rounding, suggesting that the PBP2/MreC complex formation in vivo is essential for cell morphology.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/citologia , Helicobacter pylori/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Helicobacter pylori/química , Helicobacter pylori/genética , Viabilidade Microbiana , Dados de Sequência Molecular , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
10.
Artigo em Inglês | MEDLINE | ID: mdl-19110475

RESUMO

Undecaprenyl phosphate is the essential lipid involved in the transport of hydrophilic motifs across the bacterial membranes during the synthesis of cell wall polymers such as peptidoglycan. A HPLC procedure was developed for the quantification of undecaprenyl phosphate and its two derivatives, undecaprenyl pyrophosphate and undecaprenol. During the exponential growth phase, the pools of undecaprenyl phosphate and undecaprenyl pyrophosphate were ca. 75 and 270 nmol/g of cell dry weight, respectively, in Escherichia coli, and ca. 50 and 150 nmol/g, respectively, in Staphylococcus aureus. Undecaprenol was detected in S. aureus (70 nmol/g), but not in E. coli (<1 nmol/g).


Assuntos
Membrana Celular/química , Escherichia coli/química , Fosfatos de Poli-Isoprenil/análise , Fosfatos de Poli-Isoprenil/metabolismo , Staphylococcus aureus/química , Cromatografia Líquida de Alta Pressão , Lipídeos de Membrana/química , Terpenos/análise
11.
Biochemistry ; 47(34): 8919-28, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18672909

RESUMO

The MraY transferase is an integral membrane protein that catalyzes an essential step of peptidoglycan biosynthesis, namely the transfer of the phospho-N-acetylmuramoyl-pentapeptide motif onto the undecaprenyl phosphate carrier lipid. It belongs to a large superfamily of eukaryotic and prokaryotic prenyl sugar transferases. No 3D structure has been reported for any member of this superfamily, and to date MraY is the only protein that has been successfully purified to homogeneity. Nineteen polar residues located in the five cytoplasmic segments of MraY appeared as invariants in the sequences of MraY orthologues. A certain number of these invariant residues were found to be conserved in the whole superfamily. To assess the importance of these residues in the catalytic process, site-directed mutagenesis was performed using the Bacillus subtilis MraY as a model. Fourteen residues were shown to be essential for MraY activity by an in vivo functional complementation assay using a constructed conditional mraY mutant strain. The corresponding mutant proteins were purified and biochemically characterized. None of these mutations did significantly affect the binding of the nucleotidic and lipidic substrates, but the k cat was dramatically reduced in almost all cases. The important residues for activity therefore appeared to be distributed in all the cytoplasmic segments, indicating that these five regions contribute to the structure of the catalytic site. Our data show that the D98 residue that is invariant in the whole superfamily should be involved in the deprotonation of the lipid substrate during the catalytic process.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Transferases/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Cloreto de Magnésio/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Transferases/química , Transferases/genética , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transformação Genética
12.
J Biol Chem ; 281(32): 22761-72, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16777846

RESUMO

Colicin M was earlier demonstrated to provoke Escherichia coli cell lysis via inhibition of cell wall peptidoglycan (murein) biosynthesis. As the formation of the O-antigen moiety of lipopolysaccharides was concomitantly blocked, it was hypothesized that the metabolism of undecaprenyl phosphate, an essential carrier lipid shared by these two pathways, should be the target of this colicin. However, the exact target and mechanism of action of colicin M was unknown. Colicin M was now purified to near homogeneity, and its effects on cell wall peptidoglycan metabolism reinvestigated. It is demonstrated that colicin M exhibits both in vitro and in vivo enzymatic properties of degradation of lipid I and lipid II peptidoglycan intermediates. Free undecaprenol and either 1-pyrophospho-MurNAc-pentapeptide or 1-pyrophospho-MurNAc-(pentapeptide)-Glc-NAc were identified as the lipid I and lipid II degradation products, respectively, showing that the cleavage occurred between the lipid moiety and the pyrophosphoryl group. This is the first time such an activity is described. Neither undecaprenyl pyrophosphate nor the peptidoglycan nucleotide precursors were substrates of colicin M, indicating that both undecaprenyl and sugar moieties were essential for activity. The bacteriolytic effect of colicin M therefore appears to be the consequence of an arrest of peptidoglycan polymerization steps provoked by enzymatic degradation of the undecaprenyl phosphate-linked peptidoglycan precursors.


Assuntos
Colicinas/química , Peptidoglicano/química , Fosfatos de Poli-Isoprenil/química , Bacitracina/química , Sequência de Bases , Cromatografia em Camada Fina , Escherichia coli/metabolismo , Lipídeos/química , Modelos Químicos , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo
13.
J Biol Chem ; 280(32): 28852-7, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15946938

RESUMO

Overexpression of the BcrC(Bs) protein, formerly called YwoA, in Escherichia coli or in Bacillus subtilis allows these bacteria to stand higher concentrations of bacitracin. It was suggested that BcrC(Bs) was a membrane-spanning domain of an ATP binding cassette (ABC) transporter involved in bacitracin resistance. However, we hypothesized that this protein has an undecaprenyl pyrophosphate (UPP) phosphatase activity able to compete with bacitracin for UPP. We found that overexpression of a recombinant His6-BcrC(Bs) protein in E. coli (i) increased the resistance of the cells to bacitracin and (ii) increased UPP phosphatase activity in membrane preparations by 600-fold. We solubilized and prepared an electrophoretically pure protein exhibiting a strong UPP phosphatase activity. BcrC(Bs), which belongs to the type 2 phosphatidic acid phosphatase (PAP2) phosphatase superfamily (PF01569), differs totally from the already known BacA UPP phosphatase from E. coli, a member of the PF02673 family of the Protein family (Pfam) database. Thus, BcrC(Bs) and its orthologs form a new class of proteins within the PAP2 phosphatase superfamily, and likely all of them share a UPP phosphatase activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Bacillus subtilis/metabolismo , Resistência a Medicamentos/genética , Pirofosfatases/metabolismo , Pirofosfatases/fisiologia , Inibidores da Captação Adrenérgica/farmacologia , Antibacterianos/farmacologia , Bacitracina/farmacologia , Proteínas de Bactérias/química , Sequência de Bases , Clonagem Molecular , Biologia Computacional , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Deleção de Genes , Dados de Sequência Molecular , Mutação , Monoéster Fosfórico Hidrolases/metabolismo , Plasmídeos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Ligação Proteica , Reserpina/farmacologia
14.
J Biol Chem ; 280(19): 18689-95, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15778224

RESUMO

The bacA gene product of Escherichia coli was recently purified to near homogeneity and identified as an undecaprenyl pyrophosphate phosphatase activity (El Ghachi, M., Bouhss, A., Blanot, D., and Mengin-Lecreulx, D. (2004) J. Biol. Chem. 279, 30106-30113). The enzyme function is to synthesize the carrier lipid undecaprenyl phosphate that is essential for the biosynthesis of peptidoglycan and other cell wall components. The inactivation of the chromosomal bacA gene was not lethal but led to a significant, but not total, depletion of undecaprenyl pyrophosphate phosphatase activity in E. coli membranes, suggesting that other(s) protein(s) should exist and account for the residual activity and viability of the mutant strain. Here we report that inactivation of two additional genes, ybjG and pgpB, is required to abolish growth of the bacA mutant strain. Overexpression of either of these genes, or of a fourth identified one, yeiU, is shown to result in bacitracin resistance and increased levels of undecaprenyl pyrophosphate phosphatase activity, as previously observed for bacA. A thermosensitive conditional triple mutant delta bacA,delta ybjG,delta pgpB in which the expression of bacA is impaired at 42 degrees C was constructed. This strain was shown to accumulate soluble peptidoglycan nucleotide precursors and to lyse when grown at the restrictive temperature, due to the depletion of the pool of undecaprenyl phosphate and consequent arrest of cell wall synthesis. This work provides evidence that two different classes of proteins exhibit undecaprenyl pyrophosphate phosphatase activity in E. coli and probably other bacterial species; they are the BacA enzyme and several members from a superfamily of phosphatases that, different from BacA, share in common a characteristic phosphatase sequence motif.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/fisiologia , Fosfatos de Poli-Isoprenil/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacitracina/farmacologia , Sequência de Bases , Catálise , Parede Celular/metabolismo , Escherichia coli/metabolismo , Deleção de Genes , Genótipo , Temperatura Alta , Lipídeos/química , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Oligonucleotídeos/química , Peptidoglicano/química , Fenótipo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Plasmídeos/metabolismo , Temperatura , Fatores de Tempo
15.
J Biol Chem ; 279(29): 30106-13, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15138271

RESUMO

The bacA gene, the overexpression of which results in bacitracin resistance, was inactivated and shown to be non-essential for growth of Escherichia coli. It was proposed earlier that the bacA gene product may confer resistance to the antibiotic by phosphorylation of undecaprenol (Cain, B. D., Norton, P. J., Eubanks, W., Nick, H. S., and Allen, C. M. (1983) J. Bacteriol. 175, 3784-3789). In the present work, this extremely hydrophobic membrane protein was overproduced and purified to near homogeneity. The analysis of its catalytic properties clearly demonstrated that the purified BacA protein exhibited undecaprenyl pyrophosphate phosphatase activity but not undecaprenol phosphokinase activity. This finding was perfectly consistent with the mechanism of action of bacitracin that consists in the sequestration of undecaprenyl pyrophosphate, the BacA enzyme substrate. The level of undecaprenyl pyrophosphate phosphatase was increased by 280-fold in cells carrying bacA on a multicopy expression plasmid. It was decreased by approximately 75% but was not completely abolished in a bacA disruption mutant, suggesting that BacA is the main E. coli undecaprenyl pyrophosphate phosphatase but that other protein(s) exhibiting such an activity should exist to account for the residual activity and viability of the mutant strain. This is the first gene encoding undecaprenyl pyrophosphate phosphatase identified to date. Considering its newly identified function, we propose to rename the bacA gene uppP.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Monoéster Fosfórico Hidrolases/genética , Bacillus subtilis/metabolismo , Bacitracina/farmacologia , Proteínas de Bactérias/metabolismo , Catálise , Membrana Celular/metabolismo , Cromatografia em Camada Fina , Citoplasma/metabolismo , Detergentes/farmacologia , Farmacorresistência Bacteriana , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Mutação , Fenótipo , Monoéster Fosfórico Hidrolases/biossíntese , Plasmídeos/metabolismo , Fosfatos de Poli-Isoprenil/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...