Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 25: 101001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420144

RESUMO

Tendon diseases pose a significant challenge in regenerative medicine due to the limited healing capacity of this tissue. Successful tendon regeneration requires a combination of angiogenesis, immune response, and tenogenesis processes. An effective tendon engineering (TE) strategy must finely tune this systems' interplay toward homeostasis. This study explores in vitro the paracrine influence of amniotic epithelial stem cells (AECs) engineered on a validated 3D electrospun PLGA scaffolds on HUVECs (angiogenesis), PBMCs/Jurkat (immune response), and AECs (tenogenic stem cell activation). The results revealed the role of scaffold's topology and topography in significantly modulating the paracrine profile of the cells. In detail, AECs basal release of bioactive molecules was boosted in the cells engineered on 3D scaffolds, in particular VEGF-D, b-FGF, RANTES, and PDGF-BB (p < 0.0001 vs. CMCTR). Moreover, biological tests demonstrated 3D scaffolds' proactive role in potentiating AECs' paracrine inhibition on PBMCs proliferation (CM3Dvs. CTR, p < 0.001) and LPS-mediated Jurkat activation with respect to controls (CM3D and CM2Dvs. CTR, p < 0.01 and p < 0.05, respectively), without exerting any in vitro pro-angiogenic role in promoting HUVECs proliferation and tubule formation. Teno-inductive paracrine ability of AECs engineered on 3D scaffolds was assessed on co-cultured ones, which formed tendon-like structures. These latter demonstrated an upregulation of tendon-related genes (SCX, THBS4, COL1, and TNMD) and the expression TNMD and COL1 proteins. Overall, this research underscores the pivotal role of the 3D topology and topography of PLGA tendon mimetic scaffolds in orchestrating effective tendon regeneration through modulating cell behavior and crosstalk between engineered stem cells and different subpopulations in the damaged tendon.

2.
iScience ; 26(9): 107582, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680464

RESUMO

Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.

3.
Front Vet Sci ; 10: 1175346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180059

RESUMO

There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.

5.
Front Vet Sci ; 10: 1281040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179329

RESUMO

Introduction: Tendon disorders present significant challenges in the realm of musculoskeletal diseases, affecting locomotor activity and causing pain. Current treatments often fall short of achieving complete functional recovery of the tendon. It is crucial to explore, in preclinical research, the pathways governing the loss of tissue homeostasis and its regeneration. In this context, this study aimed to establish a correlation between the unbiased locomotor activity pattern of CRL:CD1 (ICR) mice exposed to uni- or bilateral Achilles tendon (AT) experimental injuries and the key histomorphometric parameters that influence tissue microarchitecture recovery. Methods: The study involved the phenotyping of spontaneous and voluntary locomotor activity patterns in male mice using digital ventilated cages (DVC®) with access to running wheels either granted or blocked. The mice underwent non-intrusive 24/7 long-term activity monitoring for the entire study period. This period included 7 days of pre-injury habituation followed by 28 days post-injury. Results and discussion: The results revealed significant variations in activity levels based on the type of tendon injury and access to running wheels. Notably, mice with bilateral lesions and unrestricted wheel access exhibited significantly higher activity after surgery. Extracellular matrix (ECM) remodeling, including COL1 deposition and organization, blood vessel remodeling, and metaplasia, as well as cytological tendon parameters, such as cell alignment and angle deviation were enhanced in surgical (bilateral lesion) and husbandry (free access to wheels) groups. Interestingly, correlation matrix analysis uncovered a strong relationship between locomotion and microarchitecture recovery (cell alignment and angle deviation) during tendon healing. Overall, this study highlights the potential of using mice activity metrics obtained from a home-cage monitoring system to predict tendon microarchitecture recovery at both cellular and ECM levels. This provides a scalable experimental setup to address the challenging topic of tendon regeneration using innovative and animal welfare-compliant strategies.

6.
Mol Reprod Dev ; 89(12): 646-654, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36444830

RESUMO

Mitochondrial DNA (mtDNA) plays a crucial role in the development of a competent oocyte. Indeed, mtDNA alterations may predispose to chromosome nondisjunction, resulting in infertility due to a reduced vitality and quality of oocytes and embryos. In this methods paper, the multiple displacement amplification approach was applied in combination with next-generation sequencing (NGS) to amplify and sequence, in single-end, the entire mtDNA of single human oocytes to directly construct genomic NGS libraries, and subsequently, to highlight and quantify the mutations they presented. The bioinformatic workflow was carried out with a specific ad hoc developed in-house software. This approach proved to be sensitive and specific, also highlighting the mutations present in heteroplasmy, showing deletion, insertion or substitution mutations in the genes involved in the respiratory chain, even if the found variants were benign or of uncertain meaning. The analysis of mtDNA mutations in the oocyte could provide a better understanding of specific genetic abnormalities and of their possible effect on oocyte developmental competence. This study shows how this approach, based on a massive parallel sequencing of clonally amplified DNA molecules, allows to sequence the entire mitochondrial genome of single oocytes in a short time and with a single analytical run and to verify mtDNA mutations.


Assuntos
Heteroplasmia , Mitocôndrias , Humanos , Mitocôndrias/genética , DNA Mitocondrial/genética , Oócitos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
Nutrients ; 14(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297035

RESUMO

Female reproduction focuses mainly on achieving fully grown follicles and competent oocytes to be successfully fertilized, as well as on nourishing the developing offspring once pregnancy occurs. Current evidence demonstrates that obesity and/or high-fat diet regimes can perturbate these processes, leading to female infertility and transgenerational disorders. Since the mechanisms and reproductive processes involved are not yet fully clarified, the present review is designed as a systematic and comparative survey of the available literature. The available data demonstrate the adverse influences of obesity on diverse reproductive processes, such as folliculogenesis, oogenesis, and embryo development/implant. The negative reproductive impact may be attributed to a direct action on reproductive somatic and germinal compartments and/or to an indirect influence mediated by the endocrine, metabolic, and immune axis control systems. Overall, the present review highlights the fragmentation of the current information limiting the comprehension of the reproductive impact of a high-fat diet. Based on the incidence and prevalence of obesity in the Western countries, this topic becomes a research challenge to increase self-awareness of dietary reproductive risk to propose solid and rigorous preventive dietary regimes, as well as to develop targeted pharmacological interventions.


Assuntos
Dieta Hiperlipídica , Longevidade , Gravidez , Animais , Feminino , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Obesidade/metabolismo , Fertilidade , Mamíferos
8.
Biomedicines ; 10(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36289840

RESUMO

Tendon tissue engineering aims to develop effective implantable scaffolds, with ideally the native tissue's characteristics, able to drive tissue regeneration. This research focused on fabricating tendon-like PLGA 3D biomimetic scaffolds with highly aligned fibers and verifying their influence on the biological potential of amniotic epithelial stem cells (AECs), in terms of tenodifferentiation and immunomodulation, with respect to fleeces. The produced 3D scaffolds better resemble native tendon tissue, both macroscopically, microscopically, and biomechanically. From a biological point of view, these constructs were able to instruct AECs genotypically and phenotypically. In fact, cells engineered on 3D scaffolds acquired an elongated tenocyte-like morphology; this was different from control AECs, which retained their polygonal morphology. The boosted AECs tenodifferentiation by 3D scaffolds was confirmed by the upregulation of tendon-related genes (SCX, COL1 and TNMD) and TNMD protein expression. The produced constructs also prompted AECs' immunomodulatory potential, both at the gene and paracrine level. This enhanced immunomodulatory profile was confirmed by a greater stimulatory effect on THP-1-activated macrophages. These biological effects have been related to the mechanotransducer YAP activation evidenced by its nuclear translocation. Overall, these results support the biomimicry of PLGA 3D scaffolds, revealing that not only fiber alignment but also scaffold topology provide an in vitro favorable tenodifferentiative and immunomodulatory microenvironment for AECs that could potentially stimulate tendon regeneration.

9.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159244

RESUMO

Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.


Assuntos
Reconstituição Imune , Tendinopatia , Traumatismos dos Tendões , Humanos , Traumatismos dos Tendões/terapia , Tendões , Tenócitos
10.
Cells ; 11(2)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053383

RESUMO

Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon's poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineering represents a promising solution for the regeneration of damaged tendons with the aim to stimulate tissue regeneration or to produce functional implantable biomaterials. However, any technological advancement must take into consideration the role of the immune system in tissue regeneration and the potential of biomaterial scaffolds to control the immune signaling, creating a pro-regenerative environment. In this context, immunoengineering has emerged as a new discipline, developing innovative strategies for tendon injuries. It aims at designing scaffolds, in combination with engineered bioactive molecules and/or stem cells, able to modulate the interaction between the transplanted biomaterial-scaffold and the host tissue allowing a pro-regenerative immune response, therefore hindering fibrosis occurrence at the injury site and guiding tendon regeneration. Thus, this review is aimed at giving an overview on the role exerted from different tissue engineering actors in leading immunoregeneration by crosstalking with stem and immune cells to generate new paradigms in designing regenerative medicine approaches for tendon injuries.


Assuntos
Imunidade , Regeneração/fisiologia , Tendões/imunologia , Tendões/fisiologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Humanos , Imunomodulação
11.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831443

RESUMO

Electrospun poly(lactic-co-glycolic acid) (PLGA) scaffolds with highly aligned fibers (ha-PLGA) represent promising materials in the field of tendon tissue engineering (TE) due to their characteristics in mimicking fibrous extracellular matrix (ECM) of tendon native tissue. Among these properties, scaffold biodegradability must be controlled allowing its replacement by a neo-formed native tendon tissue in a controlled manner. In this study, ha-PLGA were subjected to hydrolytic degradation up to 20 weeks, under di-H2O and PBS conditions according to ISO 10993-13:2010. These were then characterized for their physical, morphological, and mechanical features. In vitro cytotoxicity tests were conducted on ovine amniotic epithelial stem cells (oAECs), up to 7 days, to assess the effect of non-buffered and buffered PLGA by-products at different concentrations on cell viability and their stimuli on oAECs' immunomodulatory properties. The ha-PLGA scaffolds degraded slowly as evidenced by a slight decrease in mass loss (14%) and average molecular weight (35%), with estimated degradation half-time of about 40 weeks under di-H2O. The ultrastructure morphology of the scaffolds showed no significant fiber degradation even after 20 weeks, but alteration of fiber alignment was already evident at week 1. Moreover, mechanical properties decreased throughout the degradation times under wet as well as dry PBS conditions. The influence of acid degradation media on oAECs was dose-dependent, with a considerable effect at 7 days' culture point. This effect was notably reduced by using buffered media. To a certain level, cells were able to compensate the generated inflammation-like microenvironment by upregulating IL-10 gene expression and favoring an anti-inflammatory rather than pro-inflammatory response. These in vitro results are essential to better understand the degradation behavior of ha-PLGA in vivo and the effect of their degradation by-products on affecting cell performance. Indeed, buffering the degradation milieu could represent a promising strategy to balance scaffold degradation. These findings give good hope with reference to the in vivo condition characterized by physiological buffering systems.


Assuntos
Ácidos/química , Âmnio/citologia , Células Epiteliais/citologia , Imunomodulação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Forma Celular , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Peso Molecular , Ovinos
12.
Front Bioeng Biotechnol ; 9: 649288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777919

RESUMO

Regenerative medicine has greatly progressed, but tendon regeneration mechanisms and robust in vitro tendon differentiation protocols remain to be elucidated. Recently, tendon explant co-culture (CO) has been proposed as an in vitro model to recapitulate the microenvironment driving tendon development and regeneration. Here, we explored standardized protocols for production and storage of bioactive tendon-derived secretomes with an evaluation of their teno-inductive effects on ovine amniotic epithelial cells (AECs). Teno-inductive soluble factors were released in culture-conditioned media (CM) only in response to active communication between tendon explants and stem cells (CMCO). Unsuccessful tenogenic differentiation in AECs was noted when exposed to CM collected from tendon explants (CMFT) only, whereas CMCO upregulated SCXB, COL I and TNMD transcripts, in AECs, alongside stimulation of the development of mature 3D tendon-like structures enriched in TNMD and COL I extracellular matrix proteins. Furthermore, although the tenogenic effect on AECs was partially inhibited by freezing CMCO, this effect could be recovered by application of an in vivo-like physiological oxygen (2% O2) environment during AECs tenogenesis. Therefore, CMCO can be considered as a waste tissue product with the potential to be used for the development of regenerative bio-inspired devices to innovate tissue engineering application to tendon differentiation and healing.

13.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937830

RESUMO

Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.


Assuntos
Tendinopatia/terapia , Tendões/citologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular/fisiologia , Humanos , Regeneração/fisiologia , Cicatrização/fisiologia
14.
Molecules ; 25(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664582

RESUMO

Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this study, electrospun PLGA with highly aligned microfibers were cold atmospheric plasma (CAP)-treated by varying the treatment exposure time (30, 60, and 90 s) and the working distance (1.3 and 1.7 cm) and characterized by their physicochemical, mechanical and bioactive properties on ovine amniotic epithelial cells (oAECs). CAP improved the hydrophilic properties of the treated materials due to the incorporation of new oxygen polar functionalities on the microfibers' surface especially when increasing treatment exposure time and lowering working distance. The mechanical properties, though, were affected by the treatment exposure time where the optimum performance was obtained after 60 s. Furthermore, CAP treatment did not alter oAECs' biocompatibility and improved cell adhesion and infiltration onto the microfibers especially those treated from a distance of 1.3 cm. Moreover, teno-inductive potential of highly aligned PLGA electrospun microfibers was maintained. Indeed, cells cultured onto the untreated and CAP treated microfibers differentiated towards the tenogenic lineage expressing tenomodulin, a mature tendon marker, in their cytoplasm. In conclusion, CAP treatment on PLGA microfibers conducted at 1.3 cm working distance represent the optimum conditions to activate PLGA surface by improving their hydrophilicity and cell bio-responsiveness. Since for tendon tissue engineering purposes, both high cell adhesion and mechanical parameters are crucial, PLGA treated for 60 s at 1.3 cm was identified as the optimal construct.


Assuntos
Materiais Biocompatíveis , Células Epiteliais/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Âmnio/citologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular , Diferenciação Celular , Células Cultivadas , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Ovinos
15.
Cells ; 9(5)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413998

RESUMO

Injured tendons are challenging in their regeneration; thus, tissue engineering represents a promising solution. This research tests the hypothesis that the response of amniotic epithelial stem cells (AECs) can be modulated by fiber diameter size of tendon biomimetic fleeces. Particularly, the effect of electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned microfibers possessing two different diameter sizes (1.27 and 2.5 µm: ha1- and ha2-PLGA, respectively) was tested on the ability of AECs to differentiate towards the tenogenic lineage by analyzing tendon related markers (Collagen type I: COL1 protein and mRNA Scleraxis: SCX, Tenomodulin: TNMD and COL1 gene expressions) and to modulate their immunomodulatory properties by investigating the pro- (IL-6 and IL-12) and anti- (IL-4 and IL-10) inflammatory cytokines. It was observed that fiber alignment and not fiber size influenced cell morphology determining the morphological change of AECs from cuboidal to fusiform tenocyte-like shape. Instead, fleece mechanical properties, cell proliferation, tenogenic differentiation, and immunomodulation were regulated by changing the ha-PLGA microfiber diameter size. Specifically, higher DNA quantity and better penetration within the fleece were found on ha2-PLGA, while ha1-PLGA fleeces with small fiber diameter size had better mechanical features and were more effective on AECs trans-differentiation towards the tenogenic lineage by significantly translating more efficiently SCX into the downstream effector TNMD. Moreover, the fiber diameter of 1.27 µm induced higher expression of pro-regenerative, anti-inflammatory interleukins mRNA expression (IL-4 and IL-10) with favorable IL-12/IL-10 ratio with respect to the fiber diameter of 2.5 µm. The obtained results demonstrate that fiber diameter is a key factor to be considered when designing tendon biomimetic fleece for tissue repair and provide new insights into the importance of controlling matrix parameters in enhancing cell differentiation and immunomodulation either for the cells functionalized within or for the transplanted host tissue.


Assuntos
Âmnio/citologia , Materiais Biomiméticos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/imunologia , Tendões/citologia , Engenharia Tecidual , Animais , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interleucinas/farmacologia , Ovinos , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
16.
Cells ; 9(2)2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012741

RESUMO

Background. The design of tendon biomimetic electrospun fleece with Amniotic Epithelial Stem Cells (AECs) that have shown a high tenogenic attitude may represent an alternative strategy to overcome the unsatisfactory results of conventional treatments in tendon regeneration. Methods. In this study, we evaluated AEC-engineered electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned fibers (ha-PLGA) that mimic tendon extracellular matrix, their biocompatibility, and differentiation towards the tenogenic lineage. PLGA fleeces with randomly distributed fibers (rd-PLGA) were generated as control. Results. Optimal cell infiltration and biocompatibility with both PLGA fleeces were shown. However, only ha-PLGA fleeces committed AECs towards an Epithelial-Mesenchymal Transition (EMT) after 48 h culture, inducing their cellular elongation along the fibers' axis and the upregulation of mesenchymal markers. AECs further differentiated towards tenogenic lineage as confirmed by the up-regulation of tendon-related genes and Collagen Type 1 (COL1) protein expression that, after 28 days culture, appeared extracellularly distributed along the direction of ha-PLGA fibers. Moreover, long-term co-cultures of AEC-ha-PLGA bio-hybrids with fetal tendon explants significantly accelerated of half time AEC tenogenic differentiation compared to ha-PLGA fleeces cultured only with AECs. Conclusions. The fabricated tendon biomimetic ha-PLGA fleeces induce AEC tenogenesis through an early EMT, providing a potential tendon substitute for tendon engineering research.


Assuntos
Âmnio/citologia , Materiais Biomiméticos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Células-Tronco/citologia , Tendões/citologia , Engenharia Tecidual , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ovinos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
17.
Sci Total Environ ; 609: 830-841, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28783898

RESUMO

A powerful analytical method for simultaneous determination of 63 pharmaceuticals and some metabolites in aqueous samples has been developed. The list of compounds amenable to the methods includes different therapeutic classes belonging to antibiotics, stimulants, antidepressants, mucolytics, and antiparasites. The method involves concentration and clean up by an offline solid phase extraction SPE followed by liquid chromatography coupled to tandem mass spectrometry (LC-ESI-MS/MS). The recovery of the target compounds from water samples was most efficient on Waters Oasis HLB SPE cartridge, while acetonitrile/water (60/40) was shown to be the most suitable solvent for desorbing the compounds from SPE. In addition, acidification of samples prior to SPE was optimized to enhance the recovery of the compounds. In terms of method validation, the recoveries of analytes ranged from 68% to 134%. Repeatability and intermediate precision were <11% and 14%, respectively. The method detection limits ranged from 2.3ngL-1 to 94.3ngL-1. An optimized method was applied in a monitoring program to study the occurrence of pharmaceuticals to more than hundred samples collected from rivers, lakes, fountains, and wells overall Lebanon from April to June 2016. Caffeine, erythromycin and its degradation forms, were the most frequently detected compounds at levels reaching >10,000ngL-1 and 2000ngL-1, respectively. Moreover, bacterial analysis showed that the samples were contaminated by Escherichia coli (23%), intestinal Enterococcus (48%) and Pseudomonas aeruginosa (27%). Therefore, in order to evaluate if a correlation exists between finding antibiotics in water samples and the development of resistant-bacteria, an antimicrobial susceptibility test was conducted to the identified isolates using disk diffusion method. Multiple-antibiotic-resistant strains in both intestinal Enterococcus and E. coli were evident in many water samples, while P. aeruginosa was resistant to only one studied antibiotic.


Assuntos
Antibacterianos/análise , Farmacorresistência Bacteriana , Microbiologia da Água , Poluentes Químicos da Água/análise , Cromatografia Líquida , Enterococcus/isolamento & purificação , Escherichia coli/isolamento & purificação , Água Doce/análise , Líbano , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/isolamento & purificação , Extração em Fase Sólida , Espectrometria de Massas em Tandem
18.
A A Case Rep ; 4(1): 8-11, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25612272

RESUMO

Spontaneous intracranial hypotension is a rare syndrome characterized by orthostatic headache not associated with trauma or dural puncture. In most cases, it is caused by a spontaneous spinal cerebrospinal fluid leakage as demonstrated by neuroradiological studies. The standard of care consists of conservative treatment including bed rest, hydration, and administration of caffeine or glucocorticoids. When such conservative therapy fails, an epidural blood patch is recommended. In this report, we describe the treatment of 2 patients with spontaneous intracranial hypotension who failed conservative treatment and went on to have complete and sustained resolution of their symptoms after the administration of oral fludrocortisone.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fludrocortisona/uso terapêutico , Hipotensão Intracraniana/tratamento farmacológico , Adulto , Placa de Sangue Epidural/métodos , Vazamento de Líquido Cefalorraquidiano/complicações , Vazamento de Líquido Cefalorraquidiano/diagnóstico , Vazamento de Líquido Cefalorraquidiano/terapia , Feminino , Cefaleia/tratamento farmacológico , Cefaleia/etiologia , Humanos , Hipotensão Intracraniana/diagnóstico , Masculino , Pessoa de Meia-Idade , Síndrome
19.
Can J Anaesth ; 59(6): 538-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22402954

RESUMO

PURPOSE: We designed a randomized double-blind placebo-controlled trial to assess the role of a single prophylactic dose of vitamin C (2 g) po in reducing the consumption of opioids postoperatively in patients undergoing laparoscopic cholecystectomy. METHODS: Eighty adult patients were allocated to receive 2 g vitamin C po or placebo approximately one hour prior to induction of anesthesia. Following laparoscopic cholecystectomy, patients received morphine patient-controlled analgesia for 24 hr. The following data were assessed postoperatively in the postanesthesia care unit at two, four, six, 12, and 24 hr: morphine consumption, verbal numerical rating scale scores for incisional pain and nausea/vomiting, and pruritus and sedation scores. The primary outcome measure was 24-hr morphine consumption. Patient satisfaction was assessed before hospital discharge. RESULTS: Morphine consumption was significantly lower in the vitamin C group vs the placebo group [16.2 (10.7) and 22.8 (13.8) mg, respectively; difference = 6.6 mg; 95% confidence interval, 1.1 to 12.1 mg; P = 0.02]. There was no difference in pain scores or side effects between the two groups. Satisfaction scores were similar in both groups. CONCLUSION: Our study showed that supplementation with vitamin C (2 g) po decreased morphine consumption in the postoperative period in patients undergoing laparoscopic cholecystectomy.


Assuntos
Ácido Ascórbico/uso terapêutico , Colecistectomia Laparoscópica/métodos , Morfina/administração & dosagem , Dor Pós-Operatória/prevenção & controle , Adulto , Analgesia Controlada pelo Paciente/métodos , Analgésicos Opioides/administração & dosagem , Ácido Ascórbico/administração & dosagem , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Cuidados Pré-Operatórios , Fatores de Tempo , Resultado do Tratamento , Vitaminas/administração & dosagem , Vitaminas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...