Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36593069

RESUMO

BACKGROUND: To date, T cells redirected with CD19-specific chimeric antigen receptors (CAR) have gained impressive success in B-cell malignancies. However, treatment failures are common and the occurrence of severe toxicities, such as cytokine release syndrome (CRS), still limits the full exploitation of this approach. Therefore, the development of cell products with improved therapeutic indexes is highly demanded. METHODS: In this project, we investigated how CD4 and CD8 populations cooperate during CD19 CAR-T cell responses and what is their specific role in CRS development. To this aim, we took advantage of immunodeficient mice reconstituted with a human immune system (HuSGM3) and engrafted with the B-cell acute lymphoblastic leukemia cell line NALM-6, a model that allows to thoroughly study efficacy and toxicity profiles of CD19 CAR-T cell products. RESULTS: CD4 CAR-T cells showed superior proliferation and activation potential, which translated into stronger stimulation of myeloid cells, the main triggers of adverse events. Accordingly, toxicity assessment in HuSGM3 mice identified CD4 CAR-T cells as key contributors to CRS development, revealing a safer profile when they harbor CARs embedded with 4-1BB, rather than CD28. By comparing differentially co-stimulated CD4:CD8 1:1 CAR-T cell formulations, we observed that CD4 cells shape the overall expansion kinetics of the infused product and are crucial for maintaining long-term responses. Interestingly, the combination of CD4.BBz with CD8.28z CAR-T cells resulted in the lowest toxicity, without impacting antitumor efficacy. CONCLUSIONS: Taken together, these data point out that the rational design of improved adoptive T-cell therapies should consider the biological features of CD4 CAR-T cells, which emerged as crucial for maintaining long-term responses but also endowed by a higher toxic potential.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Camundongos , Animais , Síndrome da Liberação de Citocina/etiologia , Imunoterapia Adotiva/métodos , Linfócitos T CD4-Positivos , Antígenos CD19
2.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35503659

RESUMO

Chimeric antigen receptor (CAR) T cell expansion and persistence represent key factors to achieve complete responses and prevent relapses. These features are typical of early memory T cells, which can be highly enriched through optimized manufacturing protocols. Here, we investigated the efficacy and safety profiles of CAR T cell products generated from preselected naive/stem memory T cells (TN/SCM), as compared with unselected T cells (TBULK). Notwithstanding their reduced effector signature in vitro, limiting CAR TN/SCM doses showed superior antitumor activity and the unique ability to counteract leukemia rechallenge in hematopoietic stem/precursor cell-humanized mice, featuring increased expansion rates and persistence together with an ameliorated exhaustion and memory phenotype. Most relevantly, CAR TN/SCM proved to be intrinsically less prone to inducing severe cytokine release syndrome, independently of the costimulatory endodomain employed. This safer profile was associated with milder T cell activation, which translated into reduced monocyte activation and cytokine release. These data suggest that CAR TN/SCM are endowed with a wider therapeutic index compared with CAR TBULK.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Síndrome da Liberação de Citocina , Imunoterapia Adotiva/métodos , Interleucina-15 , Células T de Memória , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética
3.
J Immunol ; 207(6): 1616-1626, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34452932

RESUMO

The evolutionarily conserved immune deficiency (IMD) signaling pathway shields Drosophila against bacterial infections. It regulates the expression of antimicrobial peptides encoding genes through the activation of the NF-κB transcription factor Relish. Tight regulation of the signaling cascade ensures a balanced immune response, which is otherwise highly harmful. Several phosphorylation events mediate intracellular progression of the IMD pathway. However, signal termination by dephosphorylation remains largely elusive. Here, we identify the highly conserved protein phosphatase 4 (PP4) complex as a bona fide negative regulator of the IMD pathway. RNA interference-mediated gene silencing of PP4-19c, PP4R2, and Falafel, which encode the catalytic and regulatory subunits of the phosphatase complex, respectively, caused a marked upregulation of bacterial-induced antimicrobial peptide gene expression in both Drosophila melanogaster S2 cells and adult flies. Deregulated IMD signaling is associated with reduced lifespan of PP4-deficient flies in the absence of any infection. In contrast, flies overexpressing this phosphatase are highly sensitive to bacterial infections. Altogether, our results highlight an evolutionarily conserved function of PP4c in the regulation of NF-κB signaling from Drosophila to mammals.


Assuntos
Proteínas de Drosophila/deficiência , Drosophila melanogaster/enzimologia , Drosophila melanogaster/imunologia , Imunidade Inata , NF-kappa B/metabolismo , Fosfoproteínas Fosfatases/deficiência , Transdução de Sinais/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expressão Gênica , Inativação Gênica , Longevidade/genética , Longevidade/imunologia , Fosfoproteínas Fosfatases/genética , Interferência de RNA , Transdução de Sinais/genética , Regulação para Cima/genética
5.
PLoS One ; 9(3): e92169, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667344

RESUMO

Proper brain functioning requires a fine-tuning between excitatory and inhibitory neurotransmission, a balance maintained through the regulation and release of glutamate and GABA. Rett syndrome (RTT) is a rare genetic disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene affecting the postnatal brain development. Dysfunctions in the GABAergic and glutamatergic systems have been implicated in the neuropathology of RTT and a disruption of the balance between excitation and inhibition, together with a perturbation of the electrophysiological properties of GABA and glutamate neurons, were reported in the brain of the Mecp2-deficient mouse. However, to date, the extent and the nature of the GABA/glutamate deficit affecting the Mecp2-deficient mouse brain are unclear. In order to better characterize these deficits, we simultaneously analyzed the GABA and glutamate levels in Mecp2-deficient mice at 2 different ages (P35 and P55) and in several brain areas. We used a multilevel approach including the quantification of GABA and glutamate levels, as well as the quantification of the mRNA and protein expression levels of key genes involved in the GABAergic and glutamatergic pathways. Our results show that Mecp2-deficient mice displayed regional- and age-dependent variations in the GABA pathway and, to a lesser extent, in the glutamate pathway. The implication of the GABA pathway in the RTT neuropathology was further confirmed using an in vivo treatment with a GABA reuptake inhibitor that significantly improved the lifespan of Mecp2-deficient mice. Our results confirm that RTT mouse present a deficit in the GABAergic pathway and suggest that GABAergic modulators could be interesting therapeutic agents for this severe neurological disorder.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácido Glutâmico/metabolismo , Proteína 2 de Ligação a Metil-CpG/fisiologia , Síndrome de Rett/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Animais , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Agonistas GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácidos Nipecóticos/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Síndrome de Rett/etiologia , Síndrome de Rett/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica , Tiagabina , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...