Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 219: 998-1008, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35963351

RESUMO

In this work, we aimed to tune cellulose nanocrystals (CNCs) properties by introducing different functional groups (aldehyde, carboxyl, silane, and ammonium groups) on the surface through different chemical modifications. These functional groups were obtained by combining: the periodate oxidation with TEMPO-oxidation, aminosylation or cationization. CNCs produced and their films were characterized to elucidate their performances. The results showed that the properties of obtained CNCs varied depending on the grafted functionalities on the surface. The results reveal that after each modification a colloidal stability is preserved. Interestingly, Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with a tensile strength of 116 MPa compared to the pristine CNCs, in contrast the subsequent modifications led to lower tensile strength. Of note, remarkable thermal stability has been achieved after modifications reaching a maximum of 280 °C. The oxygen barrier properties of the films after modifications varied between 0.48 and 0.54 cm3µm/(m2d*kPa) at 50 % RH.


Assuntos
Compostos de Amônio , Nanopartículas , Aldeídos , Celulose/química , Nanopartículas/química , Oxigênio , Ácido Periódico , Silanos
2.
Int J Biol Macromol ; 117: 592-600, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29852228

RESUMO

In the present work, cellulose nanocrystals (CNC) were produced from vine shoots waste using chemical treatments followed by acid hydrolysis process. FTIR analysis confirmed that the non-cellulosic components were progressively removed during the chemical treatments, and the final obtained materials are composed of pure cellulose. AFM and TEM observations showed that the extracted CNC possess a needle-like shape with an average length of 456 nm and an average diameter of 14 nm, giving rise to an average aspect ratio of about 32. The as-extracted CNC exhibit a cellulose I structure with high crystallinity index (82%), as determined by XRD characterization. Importantly, the resulted CNC provide a higher thermal stability in comparison with CNC extracted from other resources, using the same extraction process. The isolated CNC's surface charge density was evaluated by XPS analysis and resulted in ~2.0 sulfate groups per 100 anhydroglucose units. In order to identify the reinforcing ability of the new extracted CNC, Carboxymethyl cellulose nanocomposite films were prepared with various CNC contents (1, 3, 5, 8 wt%) and their mechanical properties were investigated by uniaxial tensile test. The results showed that the as-extracted CNC displayed a higher reinforcing ability for nanocomposite materials.


Assuntos
Carboximetilcelulose Sódica/química , Nanopartículas/química , Brotos de Planta/química , Hidrólise , Nanocompostos/química , Nanoestruturas/química , Resistência à Tração , Vitis/química
3.
Int J Biol Macromol ; 96: 340-352, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27988293

RESUMO

Novel synthesis strategy of eco-friendly bio-nanocomposite films have been exploited using cellulose nanocrystals (CNC) and polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) blend matrix as a potential in food packaging application. The CNC were extracted from sugarcane bagasse using sulfuric acid hydrolysis, and they were successfully characterized regarding their morphology, size, crystallinity and thermal stability. Thereafter, PVA/CMC-CNC bio-nanocomposite films, at various CNC contents (0.5-10wt%), were fabricated by the solvent casting method, and their properties were investigated. It was found that the addition of 5wt% CNC within a PVA/CMC increased the tensile modulus and strength by 141% and 83% respectively, and the water vapor permeability was reduced by 87%. Additionally, the bio-nanocomposites maintained the same transparency level of the PVA/CMC blend film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. In these bio-nanocomposites, the adhesion properties and the large number of functional groups that are present in the CNC's surface and the macromolecular chains of the PVA/CMC blend are exploited to improve the interfacial interactions between the CNC and the blend. Consequently, these eco-friendly structured bio-nanocomposites with superior properties are expected to be useful in food packaging applications.


Assuntos
Celulose/química , Nanocompostos/química , Nanopartículas/química , Nanotecnologia/métodos , Saccharum/química , Carboximetilcelulose Sódica/química , Estabilidade de Medicamentos , Química Verde , Hidrólise , Fenômenos Ópticos , Álcool de Polivinil , Vapor , Temperatura , Resistência à Tração
4.
Carbohydr Polym ; 137: 239-248, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26686126

RESUMO

Novel functional hybrid nanofillers composed of cellulose nanocrystals (CNC) and graphene oxide nanosheets (GON), at different weight ratios (2:1, 1:1 and 1:2), were successfully prepared and characterized, and their synergistic effect in enhancing the properties of poly(vinyl alcohol) (PVA) nanocomposites was investigated. Due to the synergistic reinforcement, it was found that the Young's modulus, tensile strength and toughness of the PVA nanocomposite containing 5 wt% hybrid nanofiller (1:2) were significantly improved by 320%, 124% and 159%, respectively; and the elongation at break basically remained compared to the neat PVA matrix. In addition, the glass and melting temperatures as well as the moisture sorption of nanocomposites were also enhanced. This synergistic effect improved the dispersion homogeneity by avoiding the agglomeration phenomenon of nanofillers within the polymer matrix, resulting in nanocomposites with largely enhanced properties compared to those prepared from single nanofiller (CNC or GON). The preparation of these hybrid nanofillers and their incorporation into a polymer provided a novel method for the development of novel multifunctional nanocomposites based on the combination of existing nanomaterials.

5.
Carbohydr Polym ; 129: 156-67, 2015 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-26050901

RESUMO

This study was aimed to develop bio-nanocomposite films of carboxymethyl cellulose (CMC)/starch (ST) polysaccharide matrix reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis and used as reinforcing phase to produce CMC/ST-CNC bio-nanocomposite films at different CNC loading levels (0.5-5.0 wt%). Steady shear viscosity and dynamic viscoelastic measurements of film-forming solution (FFS) of neat CMC, CMC/ST blend and CMC/ST-CNC bio-nanocomposites were evaluated. Viscosity measurements revealed that a transition from Newtonian behavior to shear thinning occurred when CNC were added. The dynamic tests confirmed that all FFS have a viscoelastic behavior with an entanglement network structure, induced by the hydrogen bonding. In regard to the cast film quality, the rheological data showed that all FFS were suitable for casting of films at ambient temperature. The effect of CNC addition on the optical transparency, water vapor permeability (WVP) and tensile properties of bio-nanocomposite films was studied. It was found that bio-nanocomposite films remain transparent due to CNC dispersion at the nanoscale. The WVP was significantly reduced and the elastic modulus and tensile strength were increased gradually with the addition of CNC. Herein, the steps to form new eco-friendly bio-nanocomposite films were described by taking advantage of the combination of CMC, ST and CNC. The as-produced films exhibited good optical transparency, reduced WVP and enhanced tensile properties, which are the main properties required for packaging applications.


Assuntos
Celulose/química , Nanocompostos/química , Nanopartículas/química , Reologia , Vapor/análise , Resistência à Tração , Álcalis/química , Elasticidade , Permeabilidade , Saccharum/química , Soluções , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...