Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(31): 6396-6406, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30052048

RESUMO

Photoinduced electronic and structural changes of a hydrogen-generating supramolecular RuPt photocatalyst are studied by a combination of time-resolved photoluminescence, optical transient absorption, and X-ray absorption spectroscopy. This work uses the element specificity of X-ray techniques to focus on the interplay between the photophysical and -chemical processes and the associated time scales at the catalytic Pt moiety. We observe very fast (<30 ps) photoreduction of the Pt catalytic site, followed by an ∼600 ps step into a strongly oxidized Pt center. The latter process is likely induced by oxidative addition of reactive iodine species. The oxidized Pt species is long-lived and fully recovers to the original ground state complex on a >10 µs time scale. However, the photosensitizing Ru moiety is fully restored on a much shorter ∼300 ns time scale. This reaction scheme implies that we may withdraw two electrons from a catalyst that is activated by a single photon.

2.
Struct Dyn ; 4(4): 044011, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28396880

RESUMO

The use of low temperature thermal detectors for avoiding Darwin-Bragg losses in lab-based ultrafast experiments has begun. An outline of the background of this new development is offered, showing the relevant history and initiative taken by this work.

3.
Chemistry ; 23(24): 5673-5677, 2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28248442

RESUMO

The development of new materials for solar-to-energy conversion should consider stability, ease of fabrication, and beneficial photophysical properties. In this context, a set of novel π-conjugated building blocks, with phospha- and arsaalkenes possessing a unique dithienyl annulated heterofulvenoid core, have been prepared as air- and moisture-stable sensitizers. These compounds unify electron-donor and -acceptor moieties, making them potential candidates for light-harvesting applications. Optical characterization of these systems was performed by steady-state and time-resolved absorption spectroscopy, supported by time-dependent DFT calculations. Tuning of the optical properties of these systems can be achieved by varying the pnictogen element at the bridgehead position, giving a bathochromic shift of ≈40 nm and coordinating the phosphaalkene towards gold AuI centers. The latter results in a ≈2000-fold extension of the ≈10 ps lifetime of uncoordinated systems well into the ns regime.

4.
J Phys Chem Lett ; 8(5): 1004-1008, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28195487

RESUMO

Skin photoprotection is commonly believed to rely on the photochemistry of 5,6-dihydroxyindole (DHI)- and 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-based eumelanin building blocks. Attempts to elucidate the underlying excited-state relaxation mechanisms have been partly unsuccessful due to the marked instability to oxidation. We report a study of the excited-state deactivation of DHI using steady-state and time-resolved fluorescence accompanied by high-level quantum-chemistry calculations including solvent effects. Spectroscopic data show that deactivation of the lowest excited state of DHI in aqueous buffer proceeds on the 100 ps time scale and is 20 times faster than in methanol. Quantum-chemical calculations reveal that the excited-state decay mechanism is a sequential proton-coupled electron transfer, which involves the initial formation of a solvated electron from DHI, followed by the transfer of a proton to the solvent. This unexpected finding would prompt a revision of current notions about eumelanin photophysics and photobiology.

5.
J Phys Chem Lett ; 7(7): 1096-101, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26942559

RESUMO

There is a mounting effort to use nickel oxide (NiO) as p-type selective electrode for organometal halide perovskite-based solar cells. Recently, an overall power conversion efficiency using this hole acceptor has reached 18%. However, ultrafast spectroscopic investigations on the mechanism of charge injection as well as recombination dynamics have yet to be studied and understood. Using time-resolved terahertz spectroscopy, we show that hole transfer is complete on the subpicosecond time scale, driven by the favorable band alignment between the valence bands of perovskite and NiO nanoparticles (NiO(np)). Recombination time between holes injected into NiO(np) and mobile electrons in the perovskite material is shown to be hundreds of picoseconds to a few nanoseconds. Because of the low conductivity of NiO(np), holes are pinned at the interface, and it is electrons that determine the recombination rate. This recombination competes with charge collection and therefore must be minimized. Doping NiO to promote higher mobility of holes is desirable in order to prevent back recombination.

6.
J Phys Chem Lett ; 5(12): 2094-100, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26270498

RESUMO

Pheomelanins, the epidermal pigments of red-haired people responsible for their enhanced UV susceptibility, contain 1,4-benzothiazines and 1,3-benzothiazole as main structural components. Despite the major role played in pheomelanin phototoxicity, the photoreactivity of these species has so far remained unexplored. Static and time-resolved fluorescence spectroscopy was used to identify excited-state reactions of the two main pheomelanin benzothiazole building blocks, namely, the 6-(2-amino-2-carboxyethyl)-4-hydroxy-1,3-benzothiazole (BT) and the 2-carboxy derivative (BTCA) together with model chromophores lacking some of the ionizable functions. The results show that in aqueous buffer solution the OH at 4-position and the benzothiazole nitrogen atom control the photochemistry of both BT and BTCA via excited-state proton transfer to solvent (ESPT) and excited-state intramolecular proton transfer (ESIPT), while the amino acidic groups of the alanyl chain have a minor influence on the photochemistry. The ESPT and ESIPT produce several different excited-state ionic species with lifetimes ranging from ∼100 ps to ∼3 ns.

7.
Inorg Chem ; 52(10): 5775-85, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23631457

RESUMO

X-ray absorption spectra of fac-[ReBr(CO)3(bpy)] near the Re L3- and Br K-edges were measured in a steady-state mode as well as time-resolved at 630 ps after 355 nm laser pulse excitation. Relativistic spin-orbit time-dependent density functional theory (TD-DFT) calculations account well for the shape of the near-edge absorption (the ″white line″) of the ground-state Re spectrum, assigning the lowest-lying transitions as core-to-ligand metal-to-ligand charge transfer from Re 2p(3/2) into predominantly π*(bpy) molecular orbitals (MOs) containing small 5d contributions, followed in energy by transitions into π* Re(CO)3 and delocalized σ*/π* MOs. Transitions gain their intensities from Re 5d and 6s participation in the target orbitals. The 5d character is distributed over many unoccupied MOs; the 5d contribution to any single empty MO does not exceed 29%. The Br K-edge spectrum is dominated by the ionization edge and multiple scattering features, the pre-edge electronic transitions being very weak. Time-resolved spectra measured upon formation of the lowest electronic excited state show changes characteristic of simultaneous Re and Br electronic depopulation: shifts of the Re and Br edges and the Re white line to higher energies and emergence of new intense pre-edge features that are attributed by TD-DFT to transitions from Re 2p(3/2) and Br 1s orbitals into a vacancy in the HOMO-1 created by electronic excitation. Experimental spectra together with quantum chemical calculations provide a direct evidence for a ReBr(CO)3 → bpy delocalized charge transfer character of the lowest excited state. Steady-state as well as time-resolved Re L3 spectra of [ReCl(CO)3(bpy)] and [Re(Etpy)(CO)3(bpy)](+) are very similar to those of the Br complex, in agreement with similar (TD) DFT calculated transition energies as well as delocalized excited-state spin densities and charge changes upon excitation.


Assuntos
2,2'-Dipiridil/química , Brometos/química , Monóxido de Carbono/química , Compostos Organometálicos/química , Teoria Quântica , Rênio/química , Estrutura Molecular , Compostos Organometálicos/síntese química , Espectroscopia por Absorção de Raios X
8.
J Am Chem Soc ; 133(32): 12740-8, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21740023

RESUMO

Picosecond and femtosecond X-ray absorption spectroscopy is used to probe the changes of the solvent shell structure upon electron abstraction of aqueous iodide using an ultrashort laser pulse. The transient L(1,3) edge EXAFS at 50 ps time delay points to the formation of an expanded water cavity around the iodine atom, in good agreement with classical and quantum mechanical/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. These also show that while the hydrogen atoms pointed toward iodide, they predominantly point toward the bulk solvent in the case of iodine, suggesting a hydrophobic behavior. This is further confirmed by quantum chemical (QC) calculations of I(-)/I(0)(H(2)O)(n=1-4) clusters. The L(1) edge sub-picosecond spectra point to the existence of a transient species that is not present at 50 ps. The QC calculations and the QM/MM MD simulations identify this transient species as an I(0)(OH(2)) complex inside the cavity. The simulations show that upon electron abstraction most of the water molecules move away from iodine, while one comes closer to form the complex that lives for 3-4 ps. This time is governed by the reorganization of the main solvation shell, basically the time it takes for the water molecules to reform an H-bond network. Only then is the interaction with the solvation shell strong enough to pull the water molecule of the complex toward the bulk solvent. Overall, much of the behavior at early times is determined by the reorientational dynamics of water molecules and the formation of a complete network of hydrogen bonded molecules in the first solvation shell.


Assuntos
Iodetos/química , Iodo/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Teoria Quântica , Espectroscopia por Absorção de Raios X
9.
Inorg Chem ; 50(7): 2932-43, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21388162

RESUMO

Femto- to picosecond excited-state dynamics of the complexes [Re(L)(CO)(3)(N,N)](n) (N,N = bpy, phen, 4,7-dimethyl-phen (dmp); L = Cl, n = 0; L = imidazole, n = 1+) were investigated using fluorescence up-conversion, transient absorption in the 650-285 nm range (using broad-band UV probe pulses around 300 nm) and picosecond time-resolved IR (TRIR) spectroscopy in the region of CO stretching vibrations. Optically populated singlet charge-transfer (CT) state(s) undergo femtosecond intersystem crossing to at least two hot triplet states with a rate that is faster in Cl (∼100 fs)(-1) than in imidazole (∼150 fs)(-1) complexes but essentially independent of the N,N ligand. TRIR spectra indicate the presence of two long-lived triplet states that are populated simultaneously and equilibrate in a few picoseconds. The minor state accounts for less than 20% of the relaxed excited population. UV-vis transient spectra were assigned using open-shell time-dependent density functional theory calculations on the lowest triplet CT state. Visible excited-state absorption originates mostly from mixed L;N,N(•-) → Re(II) ligand-to-metal CT transitions. Excited bpy complexes show the characteristic sharp near-UV band (Cl, 373 nm; imH, 365 nm) due to two predominantly ππ*(bpy(•-)) transitions. For phen and dmp, the UV excited-state absorption occurs at ∼305 nm, originating from a series of mixed ππ* and Re → CO;N,N(•-) MLCT transitions. UV-vis transient absorption features exhibit small intensity- and band-shape changes occurring with several lifetimes in the 1-5 ps range, while TRIR bands show small intensity changes (≤5 ps) and shifts (∼1 and 6-10 ps) to higher wavenumbers. These spectral changes are attributable to convoluted electronic and vibrational relaxation steps and equilibration between the two lowest triplets. Still slower changes (≥15 ps), manifested mostly by the excited-state UV band, probably involve local-solvent restructuring. Implications of the observed excited-state behavior for the development and use of Re-based sensitizers and probes are discussed.


Assuntos
Iminas/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Teoria Quântica , Rênio/química , Conformação Molecular , Raios Ultravioleta
10.
Phys Chem Chem Phys ; 12(21): 5551-61, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20485841

RESUMO

Ultrafast X-ray absorption spectroscopy is a powerful tool to observe electronic and geometric structures of short-lived reaction intermediates. The ab initio FEFF9 code is applied to simulate the Pt L(3)-edge XANES spectrum of the photocatalytic diplatinum molecule [Pt(2)(P(2)O(5)H(2))(4)](4-) and the photo-induced changes that occur therein. The spectra are interpreted within a XAFS-like scattering theoretical framework (bound-continuum transitions) or in terms of a final-state local l-projected density of states (LDOS) (bound-bound transitions). By using a novel Bayesian fitting procedure, we show that the ground-state structures obtained independently from the XANES and EXAFS regions of the spectrum are in good agreement with each other. The semi-quantitative result obtained for the Pt-Pt contraction in the excited state is in line with recently published values. The improved theoretical treatment of inelastic losses has shown to result in more accurate peak positions in the above-continuum region of the spectrum which is an important prerequisite for obtaining quantitative structural information from (time-resolved) XANES spectra.


Assuntos
Complexos de Coordenação/química , Soluções/química , Espectroscopia por Absorção de Raios X , Catálise , Platina/química
11.
J Phys Chem A ; 114(22): 6361-9, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20465299

RESUMO

Ultrafast excited-state dynamics of [Re(L)(CO)(3)(bpy)](n) (L = Cl, Br, n = 0; L = 4-ethyl-pyridine (Etpy), n = 1+; bpy = 2,2'-bipyridine) have been investigated in dimethylformamide (DMF) solution by fluorescence up-conversion (FlUC) and UV-vis transient absorption (TA) with approximately 100 fs time resolution. TA was also measured in the [1-ethyl-3-methyl-imidazolium]BF(4) ionic liquid. The complexes show a very broad fluorescence band at 540-550 nm at zero time delay, which decays with 100-140 fs (depending on L) by intersystem crossing (ISC) to a pipi* intraligand ((3)IL) and a Re(L)(CO)(3) --> bpy charge-transfer ((3)CT) excited states. A second emission decay component (1.1-1.7 ps), apparent in the red part of the spectrum, is attributed to (3)IL --> (3)CT conversion, leaving phosphorescence from the lowest (3)CT state as the only emission signal at longer time delays. The triplet conversion is slower in DMF than acetonitrile, commensurate with solvation times. Full assignment of the excited-state absorption at long delay times is obtained by TD-DFT calculations on the lowest triplet state, showing that the 373 nm band is the sole diagnostics of bpy reduction in the CT excited state. Bands in the visible are due to Ligand-to-Metal-Charge-Transfer (LMCT) transitions. Time-resolved UV-vis absorption spectra exhibit a units-of-ps rise of all absorption features attributed to (3)IL --> (3)CT conversion as well as electronic and vibrational relaxation, and a approximately 15 ps rise of only the 373 nm pipi*(bpy(*-)) band, which slows down to approximately 1 ns in the ionic liquid solvent. It is proposed that this slow relaxation originates mainly from restructuring of solvent molecules that are found very close to the metal center, inserted between the ligands. The solvent thus plays a key role in controlling the intramolecular charge separation, and this effect may well be operative in other classes of metal-based molecular complexes.

12.
Angew Chem Int Ed Engl ; 48(15): 2711-4, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19266507

RESUMO

Metallica: A large contraction of the Pt-Pt bond in the triplet excited state of the photoreactive [Pt(2)(P(2)O(5)H(2))(4)](4-) ion is determined by time-resolved X-ray absorption spectroscopy (see picture). The strengthening of the Pt-Pt interaction is accompanied by a weakening of the ligand coordination bonds, resulting in an elongation of the platinum-ligand bond that is determined for the first time.

13.
J Am Chem Soc ; 130(28): 8967-74, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18570416

RESUMO

Ultrafast electronic-vibrational relaxation upon excitation of the singlet charge-transfer b (1)A' state of [Re(L)(CO) 3(bpy)] ( n ) (L = Cl, Br, I, n = 0; L = 4-Et-pyridine, n = 1+) in acetonitrile was investigated using the femtosecond fluorescence up-conversion technique with polychromatic detection. In addition, energies, characters, and molecular structures of the emitting states were calculated by TD-DFT. The luminescence is characterized by a broad fluorescence band at very short times, and evolves to the steady-state phosphorescence spectrum from the a (3)A" state at longer times. The analysis of the data allows us to identify three spectral components. The first two are characterized by decay times tau 1 = 85-150 fs and tau 2 = 340-1200 fs, depending on L, and are identified as fluorescence from the initially excited singlet state and phosphorescence from a higher triplet state (b (3)A"), respectively. The third component corresponds to the long-lived phosphorescence from the lowest a (3)A" state. In addition, it is found that the fluorescence decay time (tau 1) corresponds to the intersystem crossing (ISC) time to the two emissive triplet states. tau 2 corresponds to internal conversion among triplet states. DFT results show that ISC involves electron exchange in orthogonal, largely Re-localized, molecular orbitals, whereby the total electron momentum is conserved. Surprisingly, the measured ISC rates scale inversely with the spin-orbit coupling constant of the ligand L, but we find a clear correlation between the ISC times and the vibrational periods of the Re-L mode, suggesting that the latter may mediate the ISC in a strongly nonadiabatic regime.


Assuntos
2,2'-Dipiridil/química , Compostos Organometálicos/química , Rênio/química , Medições Luminescentes/métodos , Modelos Moleculares , Teoria Quântica , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...