Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(5): 144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706927

RESUMO

Sustained inflammatory responses can badly affect several vital organs and lead to chronic inflammation-related disorders, such as atherosclerosis, pneumonia, rheumatoid arthritis, obesity, diabetes, Alzheimer's disease, and cancers. Salvia multicaulis is one of the widely distributed plants that contains several biologically active phytochemicals and diterpenoids with anti-inflammatory effects. Therefore, finding alternative and safer natural plant-extracted compounds with good curative anti-inflammatory efficiencies is an urgent need for the clinical treatment of inflammation-related diseases. In the current study, S. multicaulis Vahl was used to extract and isolate two compounds identified as salvimulticanol and candesalvone B methyl ester to examine their effects against inflammation in murine macrophage RAW264.7 cells that were induced by lipopolysaccharide (LPS). Accordingly, after culturing RAW264.7 cells and induction of inflammation by LPS (100 ng/ml), cells were exposed to different concentrations (9, 18, 37.5, 75, and 150 µM) of each compound. Then, Griess assay for detection of nitric oxide (NO) levels and western blotting for the determination of inducible nitric oxide synthase (iNOS) expression were performed. Molecular docking and molecular dynamics (MD) simulation studies were employed to investigate the anti-inflammatory mechanism. Our obtained results validated that the level of NO was significantly decreased in the macrophage cell suspensions as a response to salvimulticanol treatment in a dose-dependent manner (IC50: 25.1 ± 1.2 µM) as compared to the methyl ester of candesalvone B which exerted a weaker inhibition (IC50: 69.2 ± 3.0 µM). This decline in NO percentage was comparable with a down-regulation of iNOS expression by western blotting. Salvimulticanol strongly interacted with both the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complex and the inhibitor of nuclear factor kappa-B (NF-κB) kinase subunit beta (IKKß) to disrupt their inflammatory activation due to the significant hydrogen bonds and effective interactions with amino acid residues present in the target proteins' active sites. S.multicaulis is a rich natural source of the aromatic abietane diterpenoid, salvimulticanol, which exerted a strong anti-inflammatory effect through targeting iNOS and diminishing NO production in LPS-induced RAW264.7 cells in a mechanism that is dependent on the inhibition of TLR4-MD-2 and IKKß as activators of the classical NF-κB-mediated inflammatory pathway.

2.
BMC Complement Med Ther ; 24(1): 176, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671392

RESUMO

BACKGROUND: Fabaceae plays a crucial role in African traditional medicine as a source of large number of important folk medication, agriculture and food plants. In a search of potential antioxidant and anti-inflammatory candidates derived from locally cultivated plants, the flowers of Tipuana tipu (Benth.) Lillo growing in Egypt were subjected to extensive biological and phytochemical studies. The impact of the extraction technique on the estimated biological activities was investigated. METHODS: The flowers were extracted using different solvents (aqueous, methanol, water/methanol (1:1), methanol/methylene chloride (1:1), and methylene chloride). The different extracts were subjected to antioxidant (DPPH, ABTS, and FRAP) and anti-inflammatory (COX-2 and 5-LOX) assays. The methanol extract was assessed for its inhibitory activity against iNOS, NO production, and pro-inflammatory cytokines (NF-KB, TNF-R2, TNF-α, IL-1ß, and IL-6) in LPS-activated RAW 264.7 macrophages. The composition-activity relationship of the active methanol extract was further investigated using a comprehensive LC-QTOF-MS/MS analysis. The major identified phenolic compounds were further quantified using HPLC-DAD technique. The affinity of representative compounds to iNOS, COX-2, and 5-LOX target active sites was investigated using molecular docking and molecular dynamics simulations. RESULTS: The methanol extract exhibited the highest radical scavenging capacity and enzyme inhibitory activities against COX-2 and 5-LOX enzymes with IC50 values of 10.6 ± 0.4 and 14.4 ± 1.0 µg/mL, respectively. It also inhibited iNOS enzyme activity, suppressed NO production, and decreased the secretion of pro-inflammatory cytokines. In total, 62 compounds were identified in the extract including flavonoids, coumarins, organic, phenolic, and fatty acids. Among them 18 phenolic compounds were quantified by HPLC-DAD. The highest docking scores were achieved by kaempferol-3-glucoside and orientin. Additionally, molecular dynamics simulations supported the docking findings. CONCLUSION: The flower could be considered a potentially valuable component in herbal medicines owing to its unique composition and promising bioactivities. These findings encourage increased propagation of T. tipu or even tissue culturing of its flowers for bioprospecting of novel anti-inflammatory drugs. Such applications could be adopted as future approaches that benefit the biomedical field.


Assuntos
Anti-Inflamatórios , Antioxidantes , Flores , Extratos Vegetais , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flores/química , Camundongos , Animais , Células RAW 264.7 , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Egito , Simulação por Computador , Espectrometria de Massa com Cromatografia Líquida
3.
Chem Biodivers ; 21(5): e202301986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478727

RESUMO

In the present study, numerous acridine derivatives A1-A20 were synthesized via aromatic nucleophilic substitution (SNAr) reaction of 9-chloroacridine with carbonyl hydrazides, amines, or phenolic derivatives depending upon facile, novel, and eco-friendly approaches (Microwave and ultrasonication assisted synthesis). The structures of the new compounds were elucidated using spectroscopic methods. The title products were assessed for their antimicrobial, antioxidant, and antiproliferative activities using numerous assays. Promisingly, the investigated compounds mainstream revealed promising antibacterial and anticancer activities. Thereafter, the investigated compounds' expected mode of action was debated by using an array of in silico studies. Compounds A2 and A3 were the most promising antimicrobial agents, while compounds A2, A5, and A7 revealed the most cytotoxic activities. Accordingly, RMSD, RMSF, Rg, and SASA analyses of compounds A2 and A3 were performed, and MMPBSA was calculated. Lastly, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses of the novel acridine derivatives were investigated. The tested compounds' existing screening results afford an inspiring basis leading to developing new compelling antimicrobial and anticancer agents based on the acridine scaffold.


Assuntos
Acridinas , Antibacterianos , Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Acridinas/química , Acridinas/farmacologia , Acridinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Estrutura Molecular , Linhagem Celular Tumoral , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Relação Dose-Resposta a Droga , Bactérias Gram-Positivas/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química
4.
BMC Complement Med Ther ; 23(1): 413, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978514

RESUMO

BACKGROUND: Anacyclus pyrethrum L. (Akarkara root), a valuable Ayurvedic remedy, is reported to exhibit various pharmacological activities. Akarkara root was subjected to bioassay-guided fractionation, to isolate its active constituents and discover their potential bioactivities, followed by computational analysis. METHODS: The methanol extract and its fractions, methylene chloride, and butanol, were assessed for their antioxidant, anti-inflammatory, and anticholinergic potentials. The antioxidant activity was determined using DPPH, ABTS, FRAP, and ORAC assays. The in vitro anticholinergic effect was evaluated via acetyl- and butyryl-cholinesterase inhibition, while anti-inflammatory effect weas determined using COX-2 and 5-LOX inhibitory assays. The methylene chloride fraction was subjected to GC/MS analysis and chromatographic fractionation to isolate its major compounds. The inhibitory effect on iNOS and various inflammatory mediators in LPS-activated RAW 264.7 macrophages was investigated. In silico computational analyses (molecular docking, ADME, BBB permeability prediction, and molecular dynamics) were performed. RESULTS: Forty-one compounds were identified and quantified and the major compounds, namely, oleamide (A1), stigmasterol (A2), 2E,4E-deca-2,4-dienoic acid 2-phenylethyl amide (A3), and pellitorine (A4) were isolated from the methylene chloride fraction, the most active in all assays. All compounds showed significant in vitro antioxidant, anticholinergic and anti-inflammatory effects. They inhibited the secretion of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in activated RAW macrophages. The isolated compounds showed good fitting in the active sites of acetylcholinesterase and COX-2 with high docking scores. The ADME study revealed proper pharmacokinetics and drug likeness properties for the isolated compounds. The isolated compounds demonstrated high ability to cross the BBB and penetrate the CNS with values ranging from 1.596 to -1.651 in comparison with Donepezil (-1.464). Molecular dynamics simulation revealed stable conformations and binding patterns of the isolated compounds with the active sites of COX-2 and acetyl cholinesterase. CONCLUSIONS: Ultimately, our results specify Akarkara compounds as promising candidates for the treatment of inflammatory and neurodegenerative diseases.


Assuntos
Acetilcolinesterase , Antioxidantes , Antioxidantes/química , Simulação de Acoplamento Molecular , Cromatografia Gasosa-Espectrometria de Massas , Ciclo-Oxigenase 2/metabolismo , Cloreto de Metileno , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antibacterianos , Bioensaio , Antagonistas Colinérgicos
5.
Bioorg Chem ; 141: 106910, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871393

RESUMO

The present study describes synthesizing a novel series of polyfunctionalized pyridine congeners 1-18 and assessed for cytotoxic efficacies versus HCT-116, MCF-7, and HepG-2 among one non-cancerous BJ-1 human normal cell. Most compounds were precisely potent anticancer candidate drugs. The molecular impact of the most active compounds 9, 10, 11, 13, 15, and 17 was evaluated after MCF-7 treatment. The gene expression of pro- and ant-apoptosis markers P53, Bax, Caspase-3 and Bcl-2 as well as VEGFR-2 and HER2 were determined. Compounds 13 and 15 induced upregulation of pro-apoptosis of P53, Bax, Caspase-3 and downregulation of anti-apoptosis Bcl-2 gene. However, compound 15 showed higher effect compared to 13 and respective control. Moreover, a slight reduction in HER2 gene expression was detected due to compound 15 treatment, while VEGFR-2 gene was upregulated. In agreement, the immunoblotting analysis showed higher accumulation of P53, Bax, Caspase-3 proteins and of decrease the Bcl-2 protein levels. Furthermore, docking studies united with molecular dynamic simulation exposed compounds 13 and 15 fitting in the middle of the active site at the interface linking the ATP binding site and the allosteric hydrophobic binding pocket. Finally, we performed Petra/Osiris/ Molinspiration (POM) analysis for the newly synthesized compounds. The evaluation of primary in silico parameters revealed significant differences among individual polyfunctionalized pyridine compounds, highlighting the most promising candidates. These preliminary results may help in coordinating and initiating other research projects focused on polyfunctionalized pyridine compounds, especially those with predicted bioactivity, low toxicity, optimal ADME parameters, and promising perspectives.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Caspase 3/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Simulação de Dinâmica Molecular , Piridinas/farmacologia , Simulação de Acoplamento Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
6.
Plant Foods Hum Nutr ; 78(2): 383-389, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37219720

RESUMO

This study aims to isolate the active constituents of Pyrus pyrifolia Nakai fruits using a bioassay-guided fractionation approach, test their activity in vitro against key enzymes for metabolic disorders, and support it with molecular docking simulations. The antioxidant potential of the methanolic extract (ME), its polar (PF), and non-polar fractions (NPF), along with the inhibitory activity against α-glucosidase, α-amylase, lipase, angiotensin I converting enzyme (ACE), renin, inducible nitric oxide synthase (iNOS), and xanthine oxidase (XO) were assessed. The PF exhibited the highest antioxidant and enzyme inhibitory activity. Purification of PF yielded rutin, isoquercitrin, isorhamnetin-3-O-ß-D-glucoside, chlorogenic acid, quercetin, and cinnamic acid. HPLC-UV analysis of the PF allowed for the quantification of 15 phenolic compounds, including the isolated compounds. Cinnamic acid was the most powerful antioxidant in all assays and potent enzyme inhibitor against the tested enzymes (α-glucosidase, α-amylase, lipase, ACE, renin, iNOS, and XO). Additionally, it showed high affinity to target α-glucosidase and ACE active sites with high docking scores (calculated total binding free energy (ΔGbind) -23.11 kcal/mol and - 20.03 kcal/mol, respectively]. A 20-ns molecular dynamics simulation using MM-GBSA analysis revealed a stable conformation and binding patterns in a stimulating environment of cinnamic acid. Interestingly, the isolated compounds' dynamic investigations including RMSD, RMSF, and Rg demonstrated a stable ligand - protein complex to the active site of iNOS with ΔGbind ranging from - 68.85 kcal/mol to -13.47 kcal/mol. These findings support the notion that P. pyrifolia fruit is a functional food with multifactorial therapeutic agents against metabolic syndrome-associated diseases.


Assuntos
Síndrome Metabólica , Pyrus , Antioxidantes/química , Síndrome Metabólica/tratamento farmacológico , Frutas/química , alfa-Glucosidases , Simulação de Acoplamento Molecular , Renina , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Fenóis/análise , Lipase , alfa-Amilases
7.
Molecules ; 28(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175074

RESUMO

In this research study, the authors successfully synthesized potent new anticancer agents derived from indazol-pyrimidine. All the prepared compounds were tested for in vitro cell line inhibitory activity against three different cancerous cell lines. Results demonstrated that five of the novel compounds-4f, 4i, 4a, 4g, and 4d-possessed significant cytotoxic inhibitory activity against the MCF-7 cell line, with IC50 values of 1.629, 1.841, 2.958, 4.680, and 4.798 µM, respectively, compared to the reference drug with an IC50 value of 8.029 µM, thus demonstrating promising suppression power. Compounds 4i, 4g, 4e, 4d, and 4a showed effective cytotoxic activity stronger than the standard against Caco2 cells. Moreover, compounds 4a and 4i exhibited potent antiproliferative activity against the A549 cell line that was stronger than the reference drug. The most active products, 4f and 4i, werr e further examined for their mechanism of action. It turns out that they were capable of activating caspase-3/7 and, therefore, inducing apoptosis. However, produced a higher safety profile than the reference drug, towards the normal cells (MCF10a). Furthermore, the dynamic nature, binding interaction, and protein-ligand stability were explored through a Molecular Dynamics (MD) simulation study. Various analysis parameters (RMSD, RMSF, RoG, and SASA) from the MD simulation trajectory have suggested the stability of the compounds during the 20 ns MD simulation study. In silico ADMET results revealed that the synthesized compounds had low toxicity, good solubility, and an absorption profile since they met Lipinski's rule of five and Veber's rule. The present research highlights the potential of derivatives with indazole scaffolds bearing pyrimidine as a lead compound for designing anticancer agents.


Assuntos
Antineoplásicos , Indazóis , Humanos , Linhagem Celular Tumoral , Indazóis/farmacologia , Células CACO-2 , Antineoplásicos/química , Pirimidinas/farmacologia , Pirimidinas/química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Proliferação de Células , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga
8.
Curr Med Chem ; 30(10): 1193-1206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35702782

RESUMO

BACKGROUND: Mouse Double Minute 2 Homolog (MDM2) oncogenic protein is the principal cellular antagonist of the p53 tumor suppressor gene. Restoration of p53 activity by inhibiting the MDM2-P53 interactions at the molecular level has become the cornerstone of cancer research due to its promising anticancer effects. Natural medicinal products possess various chemical structures and represent an essential source for drug discovery. α-Mangostin (AM) and gambogic acid (G250) are plant-derived compounds that showed inhibitory effects on MDM2-P53 interactions in vitro and in vivo. METHODS: Despite the many clinical studies which performed deeper insight about the molecular understanding of the structural mechanisms exhibited by α-Mangostin and Gambogic acid-binding to MDM2 remains critical. In this study, comparative molecular dynamics simulations were performed for each Apo and bound p53 and MDM2 proteins to shed light on the MDM2-p53 interactions and get a better understanding of the inhibition mechanisms. RESULTS: Results revealed atomistic interaction of AM and G250 within the MDM2-p53 interaction cleft. Both compounds mediate the interaction between the α-helix motifs of the p53 amino-terminal domain, which caused a significant separation between orthogonally opposed residues, specifically Lys8 and Gly47 residues of the p53 and MDM2, respectively. Contrasting changes in magnitudes were observed in per-residue fluctuation on AM and G250 (~0.04 nm and ~2.3 nm, respectively). The Radius of gyration (~0.03 nm and 0.04 nm, respectively), C-alpha deviations (~0.06 nm and 0.1 nm, respectively). The phenolic group of AM was found to establish hydrogen interactions with Glu28 and His96 residues of MDM2. The trioxahexacyclo-ring of G250 also forms hydrogen bond interactions with Lys51 and Leu26 residues of MDM2. CONCLUSION: Utilizing the information provided on the inhibitory binding mode adopted by each compound in this study may further assist in the tailored designs for cancer therapeutics.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-mdm2 , Animais , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Int J Nanomedicine ; 17: 6095-6112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514376

RESUMO

Introduction: Metal nanoparticle synthesis using plant has emerged as an eco-friendly, clean, and viable strategy alternative to chemical and physical approaches. Methods: The fruit extract of Salvadora persica (SP) was utilized as a reducing and stabilizing agent in the synthesis of gold (AuNPs) and copper (CuNPs) nanoparticles. Results: UV-Vis spectra of the AuNPs and CuNPs showed peaks at the wavelengths of 530 nm and 440 nm, respectively. Transmission electron microscopy showed that nanoparticles exhibited a mainly spherical form, with a distribution range of 100 to 113 nm in diameter for AuNPs and of 130 to 135 nm in diameter for CuNPs. While energy-dispersive X-ray spectroscopy was able to confirm the existence of AuNPs and CuNPs. The alcoholic extract of the fruit SP was analyzed by GC-MS in order to identify whether or not it contained any active phytochemicals. Fourier-transform infrared spectra confirmed the presence capping functional biomolecules of SP on the surface of nanoparticles that acts as stabilizers. Analysis of the zeta potential revealed that NPs with high degree of stability, as demonstrated by a strong negative potential value in the range of 25.2 to 28.7 mV. Results showed that both green AuNPs and CuNPs have potential antimicrobial activity against human pathogens such gram-negative bacteria and gram-positive bacteria, with CuNPs having antimicrobial activity higher than AuNPs. In addition, AuNPs and CuNPs have promising antioxidant and anticancer properties when applied to MCF-7 and MDA-MB-231 breast cancer cells. Studies of molecular docking of SP bioactive compounds were conducted against methenyl tetrahydrofolate synthetase. Among all of them, Beta - Sitosterol was the most prominent. Conclusion: These AuNPs and CuNPs are particularly appealing in a variety of applications in the pharmaceutical and medicinal industries due to their economical and environmentally friendly production.


Assuntos
Nanopartículas Metálicas , Salvadoraceae , Humanos , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Cobre/farmacologia , Cobre/química , Frutas , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/química , Química Verde , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365342

RESUMO

Acacia nilotica (synonym: Vachellia nilotica (L.) P.J.H.Hurter and Mabb.) is considered an important plant of the family Fabaceae that is used in traditional medicine in many countries all over the world. In this work, the antiviral potentialities of the chemically characterized essential oils (EOs) obtained from the bark and fruits of A. nilotica were assessed in vitro against HAV, HSV1, and HSV2. Additionally, the in silico evaluation of the main compounds in both EOs was carried out against the two proteins, 3C protease of HAV and thymidine kinase (TK) of HSV. The chemical profiling of the bark EOs revealed the identification of 32 compounds with an abundance of di- (54.60%) and sesquiterpenes (39.81%). Stachene (48.34%), caryophyllene oxide (19.11%), and spathulenol (4.74%) represented the main identified constituents of bark EO. However, 26 components from fruit EO were assigned, with the majority of mono- (63.32%) and sesquiterpenes (34.91%), where trans-caryophyllene (36.95%), Z-anethole (22.87%), and γ-terpinene (7.35%) represented the majors. The maximum non-toxic concentration (MNTC) of the bark and fruits EOs was found at 500 and 1000 µg/mL, respectively. Using the MTT assay, the bark EO exhibited moderate antiviral activity with effects of 47.26% and 35.98% and a selectivity index (SI) of 2.3 and 1.6 against HAV and HSV1, respectively. However, weak activity was observed via the fruits EO with respective SI values of 3.8, 5.7, and 1.6 against HAV, HSV1, and HSV2. The in silico results exhibited that caryophyllene oxide and spathulenol (the main bark EO constituents) showed the best affinities (ΔG = -5.62, -5.33, -6.90, and -6.76 kcal/mol) for 3C protease and TK, respectively. While caryophyllene (the major fruit EO component) revealed promising binding capabilities against both proteins (ΔG = -5.31, -6.58 kcal/mol, respectively). The molecular dynamics simulation results revealed that caryophyllene oxide has the most positive van der Waals energy interaction with 3C protease and TK with significant binding free energies. Although these findings supported the antiviral potentialities of the EOs, especially bark EO, the in vivo assessment should be tested in the intraoral examination for these EOs and/or their main constituents.

11.
Pak J Pharm Sci ; 35(4(Special)): 1181-1190, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36218096

RESUMO

Garlic (known as; Allium sativum) is one of the most widely used medicinal plants in the world. Allicin is the major agent of garlic that gives its known pharmacological activities as anti-inflammatory, antibacterial, antifungal, antiviral and antioxidant agent. It could be extracted from bulbs of Allium sativum by water extraction to give allicin in low yield therefore other better methods were followed for extraction such as ultrasonic-assisted method that gives good yield. Attempts to optimize allicin extraction were found with sliced garlic at 25 °C for 90 minute of extraction for maximum yield (112µg/mL). Allicin was subjected to its evaluation as anti-herpetic against herpes simplex virus 1 (HSV-1) and exhibited a promising activity compared to acyclovir which was used as a reference standard. On the other hand, a novel synthetic amantadine derivative was evaluated as antiherpetic agent and prepared from the reaction of 2-thiouracil-5-sulphonyl chloride with amantadine hydrochloride in pyridine. The synergestic effect of allicin and the amantadine derivative was evaluated against HSV-1, using both in silico molecular docking as for dynamics simulations. Thymidine kinase target enzyme was chosen to analyze any possible interactions, as well as any protein-ligand stability. Furthermore, some of properties of the potential HSV-1 thymidine kinase target inhibitor of the amantadine derivative were analyzed.


Assuntos
Alho , Herpesvirus Humano 1 , Aciclovir/farmacologia , Amantadina , Antibacterianos , Antifúngicos , Antioxidantes , Antivirais/farmacologia , Cloretos , Dissulfetos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/farmacologia , Piridinas , Ácidos Sulfínicos , Tiouracila , Timidina Quinase , Água
12.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807285

RESUMO

BACKGROUND: The current work planned to evaluate Cordia africana Lam. stem bark, a traditionally used herb in curing of different ailments in Africa such as gastritis and wound infections, based on phytochemical and antibacterial studies of two pathogenic microorganisms: methicillin-resistant Staphylococcus aureus (MRSA) and Helicobacter pylori. METHODS: High performance liquid chromatography (HPLC) profiling was used for qualitative and quantitative investigation of the ethanol extract. The minimum inhibitory concentration (MIC) of the ethanolic extract and isolated compounds was estimated using the broth microdilution method and evidenced by molecular dynamics simulations. RESULTS: Four compounds were isolated and identified for the first time: α-amyrin, ß-sitosterol, rosmarinic acid (RA) and methyl rosmarinate (MR). HPLC analysis illustrated that MR was the dominant phenolic acid. MR showed the best bacterial inhibitory activity against MRSA and H. pylori with MIC 7.81 ± 1.7 µg/mL and 31.25 ± 0.6, respectively, when compared to clarithromycin and vancomycin, respectively. CONCLUSION: The antibacterial activity of the stem bark of Cordia africana Lam. was evidenced against MRSA and H. pylori. Computational modeling of the studied enzyme-ligands systems reveals that RA and MR can potentially inhibit both MRSA peptidoglycan transpeptidases and H. pylori urease, thereby creating a pathway via the use of a double target approach in antibacterial treatment.


Assuntos
Cordia , Helicobacter pylori , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Simulação por Computador , Cordia/química , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Extratos Vegetais/química
13.
Comput Biol Med ; 132: 104301, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33751994

RESUMO

Over the past two decades, covalent inhibitors have gained much interest and are living up to their reputation as a powerful tool in drug discovery. Covalent inhibitors possess several significant advantages, including increased biochemical efficiency, prolonged duration and the ability to target shallow, solvent-exposed substrate-binding domains. One of the enzymes that have been both covalently and non-covalently targeted is the heat shock protein 72 (HSP72). This elevated enzyme expression in cancer cells may be responsible for tumorigenesis and tumor progression by providing chemotherapy resistance. A critical gap remains in the molecular understanding of the structural mechanism's covalent and non-covalent binding to HSP72. In this study, we explore the most optimal binding mechanism in the inhibition of the HSP72. Based on the molecular dynamic analyses, it was evident that the non-covalent complex showed more stability than the covalent complex. The covalent ligand, however, was more able to induce and stabilize the sealed conformation of the HSP72-NBD ATP binding domain throughout the. Also, the non-covalent ligand does not induce any significant conformational change as it remained close to the shape of the unbound complex; and the affinity is only dependent on the multiple hydrogen bonds in contrast to the covalent ligand. This is supported by the secondary structure elements and principal component analysis that was more dominant in the covalently inhibited complex. Covalent bond induced the α-helices sealed conformation of the HSP72-NBD; based on our findings, this will prevent other small molecules from interacting at the ATP binding site domain. Moreover, inhibition of the ATP binding domain can directly affect the ATPs protein folding mechanism of the HSP72 enzyme. The essential dynamic analysis presented in this report compliments the binding mechanism of HSP72, establishing covalent inhibition as the preferred method of inhibiting the HSP72 protein. The findings from this study may assist in the design of more target-specific HSP72 covalent inhibitors exploring the surface-exposed lysine residues.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Proteínas de Choque Térmico HSP72/metabolismo , Ligantes , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
14.
Molecules ; 25(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947765

RESUMO

Covalent inhibition has recently gained a resurgence of interest in several drug discovery areas. The expansion of this approach is based on evidence elucidating the selectivity and potency of covalent inhibitors when bound to particular amino acids of a biological target. The unexpected covalent inhibition of heat shock protein 72 (HSP72) by covalently targeting Lys-56 instead of Cys-17 was an interesting observation. However, the structural basis and conformational changes associated with this preferential coupling to Lys-56 over Cys-17 remain unclear. To resolve this mystery, we employed structural and dynamic analyses to investigate the structural basis and conformational dynamics associated with the unexpected covalent inhibition. Our analyses reveal that the coupling of the irreversible inhibitor to Lys-56 is intrinsically less dynamic than Cys-17. Conformational dynamics analyses further reveal that the coupling of the inhibitor to Lys-56 induced a closed conformation of the nucleotide-binding subdomain (NBD) α-helices, in contrast, an open conformation was observed in the case of Cys-17. The closed conformation maintained the crucial salt-bridge between Glu-268 and Lys-56 residues, which strengthens the interaction affinity of the inhibitor nearly identical to adenosine triphosphate (ADP/Pi) bound to the HSP72-NBD. The outcome of this report provides a substantial shift in the conventional direction for the design of more potent covalent inhibitors.


Assuntos
Cisteína/química , Proteínas de Choque Térmico HSP72/metabolismo , Lisina/química , Adenosina/química , Análise por Conglomerados , Proteínas de Choque Térmico HSP72/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise de Componente Principal , Conformação Proteica em alfa-Hélice
15.
Protein J ; 39(2): 97-105, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32072438

RESUMO

The pace and efficiency of drug target strategies have been emanating debates among researchers in the field of drug development. Covalent inhibitors possess significant advantages over non-covalent inhibitors, such that covalent warheads can target rare residues of a particular target protein, thus leading to the development of highly selective inhibitors. However, toxicity can be a real challenge related to this class of therapeutics. From the challenges of irreversible drug toxicity to the declining reactivity of reversible drugs, herein we provide justifications from the computational point of view. It was evident that both classes had its merits; however, with the increase in drug resistance, covalent inhibition seemed more suitable. There also seems to be enhanced selectivity of the covalent systems, proving its use as a therapeutic regimen worldwide. We believe that this study will assist researchers in making informed decisions on which drug class to choose as lead compounds in the drug discovery pipeline.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos , Humanos , Modelos Moleculares
16.
Protein J ; 38(2): 142-150, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30877503

RESUMO

The constitutive BCR-ABL1 active protein fusion has been identified as the main cause of chronic myeloid leukemia. The emergence of T334I and D381N point mutations in BCR-ABL1 confer drug resistance. Recent experimental studies show a synergistic effect in suppressing this resistance when Nilotinib and Asciminib are co-administered to target both the catalytic and allosteric binding site of BCR-ABL1 oncoprotein, respectively. However, the structural mechanism by which this synergistic effect occurs has not been clearly elucidated. To obtain insight into the observed synergistic effect, molecular dynamics simulations have been employed to investigate the inhibitory mechanism as well as the structural dynamics that characterize this effect. Structural dynamic analyses indicate that the synergistic binding effect results in a more compact and stable protein conformation. In addition, binding free energy calculation suggests a dominant energy effect of nilotinib during co-administration. van der Waals energy interactions were observed to be the main energy component driving this synergistic effect. Furthermore, per-residue energy decomposition analysis identified Glu481, Ser453, Ala452, Tyr454, Phe401, Asp400, Met337, Phe336, Ile334, And Val275 as key residues that contribute largely to the synergistic effect. The findings highlighted in this study provide a molecular understanding of the dynamics and mechanisms that mediate the synergistic inhibition in BCR-ABL1 protein in chronic myeloid leukemia treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Niacinamida/análogos & derivados , Pirazóis/farmacologia , Pirimidinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Proteínas de Fusão bcr-abl/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico
17.
Z Naturforsch C J Biosci ; 73(11-12): 465-478, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30205654

RESUMO

A new series of Schiff bases containing benzіmidazole moiety 11-17 were synthesized by the reaction of 4-(1H-benzо[d]іmіdazоl-2-yl)anіline (1) with different aromatic aldehydes (4-10) via conventional heating and microwave irradiation methods. The structures of the novel Schiff bases were characterized by using different spectral data. Also, metal complexes 18-21 of compound 13 were synthesized, and their structure was confirmed by spectral measurements (IR, NMR, UV), molar conductivity, magnetic susceptibility and thermo-gravimetric analysis. The novel synthesized ligand 13 and its complexes 18-21 were tested for their in vitro antitumor activities towards breast, liver and lung cancer cell lines. Also, the acute toxicity of the prepared compounds 13 and 18-21 was determined in vivo. The results showed that the newly synthesized compounds 13 and 18-21 exhibited a significant activity against cancer, especially for complex 21, compared to standard drug doxorubicin. The molecular docking of complexes 20 and 21 has been also studied as Aurora kinase inhibitors.


Assuntos
Antineoplásicos/síntese química , Aurora Quinases/antagonistas & inibidores , Benzimidazóis/síntese química , Inibidores de Proteínas Quinases/síntese química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Aurora Quinases/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Carcinoma de Ehrlich/tratamento farmacológico , Células Hep G2 , Humanos , Células MCF-7 , Masculino , Camundongos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Bases de Schiff/química
18.
Curr Top Med Chem ; 18(13): 1135-1145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30068277

RESUMO

The serendipitous discovery of covalent inhibitors and their characteristic potency of inducing irreversible and complete inhibition in therapeutic targets have caused a paradigm shift from the use of non-covalent drugs in disease treatment. This has caused a significant evolution in the field of covalent targeting to understand their inhibitory mechanisms and facilitate the systemic design of novel covalent modifiers for 'undruggable' targets. Computational techniques have evolved over the years and have significantly contributed to the process of drug discovery by mirroring the pattern of biological occurrences thereby providing insights into the dynamics and conformational transitions associated with biomolecular interactions. Moreover, our previous contributions towards the systematic design of selective covalent modifiers have revealed the various setbacks associated with the use of these conventional techniques in the study of covalent systems, hence there is a need for distinct approaches. In this review, we highlight the modifications and development of computational techniques suitable for covalent systems, their lapses, shortcomings and recent advancements.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Simulação de Acoplamento Molecular , Humanos , Ligação Proteica
19.
Eur J Med Chem ; 146: 687-708, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29407991

RESUMO

Recently a dramatic development of the cancer drug discovery has been shown in the field of targeted cancer therapy. Checkpoint kinase 2 (Chk2) inhibitors offer a promising approach to enhance the effectiveness of cancer chemotherapy. Accordingly, in this study many pyrimidine-benzimidazole conjugates were designed and twelve feasible derivatives were selected to be synthesized to investigate their activity against Chk2 and subjected to study their antitumor activity alone and in combination with the genotoxic anticancer drugs cisplatin and doxorubicin on breast carcinoma, (ER+) cell line (MCF-7). The results indicated that the studied compounds inhibited Chk2 activity with high potency (IC50 = 5.56 nM - 46.20 nM). The studied candidates exhibited remarkable antitumor activity against MCF-7 (IG50 = 6.6  µM - 24.9 µM). Compounds 10a-c, 14 and 15 significantly potentiated the activity of the studied genotoxic drugs, whereas, compounds 9b and 20-23 antagonized their activity. Moreover, the combination of compound 10b with cisplatin revealed the best apoptotic effect as well as combination of compound 10b with doxorubicin led to complete arrest of the cell cycle at S phase where more than 40% of cells are in the S phase with no cells at G2/M. Structure-activity relationship was discussed on the basis of molecular modeling study using Molecular modeling Environment program (MOE).


Assuntos
Benzimidazóis/farmacologia , Quinase do Ponto de Checagem 2/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Benzimidazóis/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase do Ponto de Checagem 2/metabolismo , Relação Dose-Resposta a Droga , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Relação Estrutura-Atividade
20.
Chem Biodivers ; 15(3): e1700533, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29325229

RESUMO

Bcr-Abl is an oncogenic fusion protein which expression enhances tumorigenesis, and has been highly associated with chronic myeloid leukemia (CML). Acquired drug resistance in mutant Bcr-Abl has enhanced pathogenesis with the use of single therapy agents such as nilotinib. Moreover, allosteric targeting has been identified to consequentially inhibit Bcr-Abl activity, which led to the recent development of ABL-001 (asciminib) that selectively binds the myristoyl pocket. Experimental studies have revealed that the combination of nilotinib and ABL-001 induced a 'bent' conformation in the C-terminal helix of Bcr-Abl; a benchmark of inhibition, thereby exhibiting a greater potency in the treatment of CML, surmounting the setbacks of drug resistance, disease regression and relapse. Therefore, we report the first account of the dynamics and conformational analysis of oncogenic T334I Bcr-Abl by dual targeting. Our findings revealed that unlike in the Bcr-Abl-Nilotinib complex, dual targeting by both inhibitors induced the bent conformation in the C-terminal helix that varied with time. This was coupled with significant alteration in Bcr-Abl stability, flexibility, and compactness and an overall structural re-orientation inwards towards the hydrophobic core, which reduced the solvent-exposed residues indicative of protein folding. This study will facilitate allosteric targeting and the design of more potent allosteric inhibitors for resistive target proteins in cancer.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Dose-Resposta a Droga , Estabilidade Enzimática/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...