Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 99(2): 270-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35675546

RESUMO

PURPOSE: Liver fibrosis is considered as one of the ultimate outcomes of chronic liver disorders, characterized by outrageous cell proliferation and abnormal deposition of extracellular matrix, resulting in sever pathological distortions in the architecture and performance of liver tissues. The present study aimed to investigate the protective properties of aqueous methanol extract of Acrocarpus fraxinifolius leaves (AFL) against liver fibrosis induced by dual toxicity of γ-irradiation and carbon tetrachloride (CCl4) in rats. METHODS: The animals were exposed to 2 Gy irradiation once/week concurrently with intraperitoneal administration of CCl4 (0.2 mL/100 g body weight) for seven weeks. Afterwards, liver toxicity and fibrosis were assessed biochemically at cellular and molecular as well as histopathological levels. RESULTS: The livers of intoxicated rats showed distinct structural and functional changes, compared with the normal rats. The administration of AFL (500 mg/kg, p.o) significantly ameliorated the histopathological manifestations of fibrotic liver evidenced by mitigated steatosis progression, necrosis, fibrotic septa, apoptotic bodies, and immunochistochemical studies of alpha-smooth muscle actin. Also, AFL increased the final body weight, total protein, albumin levels and albumin/globulin ratio. While, the absolute liver weight, liver enzymes, total cholesterol and triglycerides were reduced. A significant modulation was observed in hydroxyproline, transforming growth factor-ß and collagen-1expression. Furthermore, AFL exerted a direct effect on liver fibrosis by promoting extracellular matrix degradation via overexpression of the tissue inhibitor metalloproteinase-1, coupled with decease of metalloproteinase-9 activity. CONCLUSIONS: Our findings suggested that AFL effectively improved the architecture of fibrotic liver and modified the biochemical markers of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Cirrose Hepática , Animais , Ratos , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Cirrose Hepática/prevenção & controle , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Fígado , Fibrose , Extratos Vegetais/farmacologia , Peso Corporal , Albuminas/efeitos adversos , Albuminas/metabolismo
2.
Cancers (Basel) ; 13(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34771733

RESUMO

Globally, breast cancer (BC) poses a serious public health risk. The disease exhibits a complex heterogeneous etiology and is associated with a glycolytic and oxidative phosphorylation (OXPHOS) metabolic reprogramming phenotype, which fuels proliferation and progression. Due to the late manifestation of symptoms, rigorous treatment regimens are required following diagnosis. Existing treatments are limited by a lack of specificity, systemic toxicity, temporary remission, and radio-resistance in BC. In this study, we have developed CD44 and folate receptor-targeting multi-functional dual drug-loaded nanoparticles. This composed of hyaluronic acid (HA) and folic acid (FA) conjugated to a 2-deoxy glucose (2DG) shell linked to a layer of dichloroacetate (DCA) and a magnesium oxide (MgO) core (2DG@DCA@MgO; DDM) to enhance the localized chemo-radiotherapy for effective BC treatment. The physicochemical properties of nanoparticles including stability, selectivity, responsive release to pH, cellular uptake, and anticancer efficacy were thoroughly examined. Mechanistically, we identified multiple component signaling pathways as important regulators of BC metabolism and mediators for the inhibitory effects elicited by DDM. Nanoparticles exhibited sustained DDM release properties in a bio-relevant media, which was responsive to the acidic pH enabling eligibility to the control of drug release from nanoparticles. DDM-loaded and HA-FA-functionalized nanoparticles exhibited increased selectivity and uptake by BC cells. Cell-based assays revealed that the functionalized DDM significantly suppressed cancer cell growth and improved radiotherapy (RT) through inducing cell cycle arrest, enhancing apoptosis, and modulating glycolytic and OXPHOS pathways. By highlighting DDM mechanisms as an antitumor and radio-sensitizing reagent, our data suggest that glycolytic and OXPHOS pathway modulation occurs via the PI3K/AKT/mTOR/NF-κB/VEGFlow and P53high signaling pathway. In conclusion, the multi-functionalized DDM opposed tumor-associated metabolic reprogramming via multiple signaling pathways in BC cells as a promising targeted metabolic approach.

3.
Tumour Biol ; 43(1): 225-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34542050

RESUMO

BACKGROUND: The limitations of surgery, radiotherapy, and chemotherapy in cancer treatment and the increase in the application of nanomaterials in the field of biomedicine have promoted the use of nanomaterials in combination with radiotherapy for cancer treatment. OBJECTIVE: To improve the efficiency of cancer treatment, curcumin-naringenin loaded dextran-coated magnetic nanoparticles (CUR-NAR-D-MNPs) were used as chemotherapy and in combination with radiotherapy to verify their effectiveness in treating tumors. METHODS: CUR-NAR-D-MNPs were prepared and studied by several characterization methods. Median inhibitory concentration (IC50) and cellular toxicity were evaluated by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell death and radiosensitization were studied by acridine orange/ethidium bromide dual staining of MCF-7 human breast cancer cells. RESULTS: CUR-NAR-D-MNPs induce apoptosis and inhibited cell proliferation through reactive oxygen species (ROS) generation. CUR-NAR-D-MNPs used alone had a certain therapeutic effect on tumors. CUR-NAR-D-MNPs plus radiotherapy significantly reduced the tumor volume and led to cell cycle arrest and induction of apoptosis through modulation of P53high, P21high, TNF-αlow, CD44low, and ROShigh signalingCONCLUSIONS:CUR-NAR-D-MNPs are effective in the treatment of tumors when combined with radiotherapy, and show radiosensitization effects against cancer proliferation in vitro and in vivo.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/terapia , Curcumina/química , Flavanonas/química , Nanopartículas de Magnetita/química , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiorradioterapia , Curcumina/farmacologia , Curcumina/uso terapêutico , Dextranos/química , Feminino , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Humanos , Células MCF-7 , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...