Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10632-10643, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38817146

RESUMO

The feasibility of a synergistic endogenous partial denitrification-phosphorus removal coupled anammox (SEPD-PR/A) system was investigated in a modified anaerobic baffled reactor (mABR) for synchronous carbon, nitrogen, and phosphorus removal. The mABR comprising four identical compartments (i.e., C1-C4) was inoculated with precultured denitrifying glycogen-accumulating organisms (DGAOs), denitrifying polyphosphate-accumulating organisms, and anammox bacteria. After 136 days of operation, the chemical oxygen demand (COD), total nitrogen, and phosphorus removal efficiencies reached 88.6 ± 1.0, 97.2 ± 1.5, and 89.1 ± 4.2%, respectively. Network-based analysis revealed that the biofilmed community demonstrated stable nutrient removal performance under oligotrophic conditions in C4. The metagenome-assembled genomes (MAGs) such as MAG106, MAG127, MAG52, and MAG37 annotated as denitrifying phosphorus-accumulating organisms (DPAOs) and MAG146 as a DGAO were dominated in C1 and C2 and contributed to 89.2% of COD consumption. MAG54 and MAG16 annotated as Candidatus_Brocadia (total relative abundance of 16.5% in C3 and 4.3% in C4) were responsible for 74.4% of the total nitrogen removal through the anammox-mediated pathway. Functional gene analysis based on metagenomic sequencing confirmed that different compartments of the mABR were capable of performing distinct functions with specific advantageous microbial groups, facilitating targeted nutrient removal. Additionally, under oligotrophic conditions, the activity of the anammox bacteria-related genes of hzs was higher compared to that of hdh. Thus, an innovative method for the treatment of low-strength municipal and nitrate-containing wastewaters without aeration was presented, mediated by an anammox process with less land area and excellent quality effluent.


Assuntos
Reatores Biológicos , Carbono , Desnitrificação , Nitrogênio , Fósforo , Fósforo/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Bactérias/metabolismo
2.
Water Res ; 245: 120619, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716295

RESUMO

The microbial consortium involving anaerobic ammonium oxidation (anammox) and partial denitrification (PD), known as PD-anammox, is an emerging energy-efficient and lower carbon nitrogen removal process from wastewater. However, maintaining a stable PD process by locking nitrate reduction until nitrite was challenging. This study established the first stable connection of anammox with constant nitrite generation by PD bacteria under a low-strength (1.3 mT) magnetic field (MF). When the nitrogen loading rate was 1.81 kg-N/m3/d, the nitrogen removal efficiency of the control reactor (R1) was 75%, lower than that of the experimental reactor (R2), which was 85%. The expression of Thauera and Zoogloea, potential PD bacteria was substantially lower in R1 (5.75% and 1.21%, respectively) than in R2 (10.25 and 6.61%, respectively), according to a meta-transcriptomic analysis. At the same time, the mRNA expression of anammox genera Candidatus Brocadia and Candidatus Kuenenia was 33.53% and 3.83% in R1 and 22.86% and 1.87% in R2. Moreover, carbon and nitrogen metabolism pathways were more abundant under the influence of low-strength MF. The selective enrichment of PD bacteria can be attributed to the increased expression of carbon metabolic pathways like the citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism. Interestingly, the control reactor was dominated by a hydroxylamine-dependent anammox process while a low-strength MF-enhanced nitric-oxide-dependent anammox process. For successful anammox-centered nitrogen removal from wastewater, this study demonstrated that low-strength MF is a convenient and applicable technique to lock the nitrate reduction until nitrite.

3.
Bioresour Technol ; 386: 129558, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499920

RESUMO

The chemical oxygen demand (COD) in municipal wastewater has become an obstacle for anammox in mainstream applications. In this study, the single chamber microbial fuel cell (MFC) was installed as an influent device for a partial nitrification-sequencing batch reactor (PN-SBR) to realize integrating COD removal and partial nitrification. After 80 days of operation, the nitrite accumulation rate reached 93%, while the COD removal efficiency was 56%. The output voltage and the power density of MFC were 66.62 mV and 2.40 W/m3, respectively. The content of EPS, especially polysaccharides in the stable phase, has increased compared with the seed sludge. The most dominant genus in MFC anode biofilm and SBR granular sludge was Thauera, which has organic compounds degradation capacity and could degrade nitrate. This study revealed the microbial interaction between MFC and partial nitrification and provided a new strategy for stable ammonia and nitrite supply for mainstream anammox plants.


Assuntos
Fontes de Energia Bioelétrica , Nitrificação , Esgotos , Amônia , Desnitrificação , Nitritos , Reatores Biológicos , Oxirredução , Nitrogênio
4.
Sci Total Environ ; 889: 164213, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196969

RESUMO

Sustainable development goal 6 emphasizes the efficient management of water resources, wastewater treatment, and reuse of treated wastewater. Removing nitrogen from wastewater was an economically expensive and energy-consuming wastewater treatment process. The discovery of anammox changes the paradigm of wastewater treatment. Nevertheless, coupling anammox with partial nitrification (PN-anammox) has been an immensely rewarding and scientifically supported side-stream wastewater treatment process. However, the PN-anammox process is inherited with severe issues of higher effluent nitrate and lower nitrogen removal efficiency at a lower temperature. Thus, it is evident that PN-anammox cannot meet the desired target without the involvement of others nitrogen cycle bacteria. The nitrate reduction pathways such as denitrifying anaerobic methane-oxidizing (DAMO) microbes, partial denitrification (PD), and dissimilatory nitrate reduction to ammonium (DNRA) seem the best alternative to reduce nitrate into nitrite or ammonium for anammox supplement. From the perspective of the environment, the coupling of anammox with PD, DAMO, and DNRA alleviates the use of organic matter, decreases greenhouse gas release, and reduces energy consumption. This review comprehensively discussed the importance and application perspective of anammox with diverse nitrate-reducing bacteria. Furthermore, research is still needed about DAMO-anammox and DNRA-anammox to achieve higher nitrogen removal efficiency. Future research should incorporate emerging pollutants removal in the anammox coupling process. This review will provide deep insight into the design of energy-efficient and carbon-neutral nitrogen removal from wastewater.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/metabolismo , Águas Residuárias , Desnitrificação , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia , Oxirredução , Anaerobiose , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Metano/metabolismo , Compostos de Amônio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...