Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22097, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092850

RESUMO

The most practical sustainable development options to safeguard the local ecology involve reducing the use of raw materials and guaranteeing proper recycling of the principal destroyed solid wastes. Preventing the creation of hazardous waste and the subsequent pollution that results from improper disposal is a top priority. Based on this, the study's authors recommend reusing the ultra-fine ceramic shards (CW). High-alkaline white cement (WC) has been partially replaced by ultra-fine CW because it is a cheaper, more abundant, and more lasting environmental material used in the production of trendy blended white cement pastes composites. In this context, we look at ultra-fine CW, a material that has been suggested for use as a hydraulic filler due to its high performance, physicomechanical qualities, and durability. XRF, XRD, FTIR, and SEM measurements are used to characterize the microstructure, thermal characteristics, and thermodynamics. Because of the effect of ultra-fine ceramic waste, the firing test reduces the mechanical strength by default, but with active filler, decreases slowly and increase its physicomechanical features and compressive strength compared to the control sample (WC), setting a new benchmark. The maximum amount of crystallization formed in the presence of ultra-fine ceramic waste in WC-matrix, resulting in a decrease in total porosity and early cracking. Together, the improved workability and energy-saving features of cement blends with ultra-fine ceramic waste, reflect their economic and environmental benefits, which may reduce building costs and boost the durability of the raw materials used in the mix.

2.
Materials (Basel) ; 14(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34640064

RESUMO

Hybrid cement (HC) can be defined as alkali activated-blended-Portland cement (PC). It is prepared by the addition of an alkaline solution to high-volume aluminosilicate-blended-PC. Although this cement exhibits higher mechanical performance compared to conventional blended one (aluminosilicate-PC blend), it represents lower commercial viability because of the corrosive nature of alkaline solution. Therefore, this study focuses on the preparing one-part HC using dry activator-based BFS (DAS). DAS was prepared by mixing sodium hydroxide (NaOH) with BFS at low water to BFS ratio, followed by drying and grinding to yield DAS-powder. Different contents of DAS (equivalent to 70 wt.% BFS and 1, 2, and 3 wt.% NaOH) were blended with 30 wt.% PC. A mixture containing 70 wt.% BFS and 30 wt.% PC was used as a reference sample. The mortar was adjusted at a sand-powder (BFS-PC and/or DAS-PC) weight ratio of 3:1. The microstructural analysis proved that DAS-powder is mainly composed of sodium calcium aluminosilicate-activated species and unreacted BFS. These species can interact again with water to form calcium aluminum silicate hydrate (C-A-S-H) and NaOH, suggesting that the DAS acts as a NaOH-carrier. One-part HC mortars having 1, 2, and 3 wt.% NaOH recorded 7th day compressive strength values of 82%, 44%, and 27%, respectively, higher than that of the control sample. At 180 days of curing, a significant reduction in compressive strength was observed within the HC mortar having 3 wt.% NaOH. This could be attributed to the increase of Ca (within C-S-H) replacement by Na, forming a Na-rich phase with lower binding capacity. The main hydration products within HC are C-S-H, C-A-S-H, and chabazite as part of the zeolite family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...