Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 40(5): 1427-1439, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35976555

RESUMO

In Egypt, both pregabalin and tramadol misuse increased in the last decade. Although many studies have confirmed the neurotoxic effects of tramadol, those of pregabalin are understudied. The aim of the study is to evaluate the neurotoxic effects of pregabalin compared with tramadol. Thirty male albino rats were included in this experimental study, and they were randomly allocated into three equal groups: group I (normal saline), group II (tramadol misuse), and group III (pregabalin misuse). All rats received the commenced drugs for 1 month. Open field tests were performed on the day of scarification, and after that, cortical samples were taken for immunohistochemical analysis and quantification of dopamine receptors' gene expression. The drug misuse groups showed a significant decrease in weight gain at the end of the study. Open field testing showed the upper hand of controls regarding all of the tested parameters. Tramadol has a more negative impact on the locomotor parameters compared with pregabalin. Both drugs induced relatively low dopamine-1 receptor (D1Rs) expression to dopamine-2 receptors (D2Rs), mimicking the schizophrenia model. Both tramadol and pregabalin were associated with neurotoxic effects in male albino rats. These effects were less noticed with pregabalin. It is suggested that long-term abuse may end in psychosis.


Assuntos
Síndromes Neurotóxicas , Tramadol , Masculino , Ratos , Dopamina , Síndromes Neurotóxicas/etiologia , Pregabalina/toxicidade , Receptores Dopaminérgicos , Solução Salina , Tramadol/toxicidade , Animais
2.
J Toxicol ; 2022: 7760594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601412

RESUMO

Bisphenol A (BPA) is an environmental toxin utilized for the production of polycarbonate plastics and epoxy resins. Due to BPA's extensive production and environmental contamination, human exposure is unavoidable. The effects of low-dose of BPA on various body tissues and organs remain controversial. Our study investigated the potential of BPA to induce biochemical, histopathological, and immunohistochemical changes in the coronary artery and myocardium and the potential protective role of L-carnitine (LC). 24 adult Wistar albino male rats were divided equally into a control group, a BPA-treated group (40 mg/kg/d, by gavage for 4 weeks), and a BPA plus LC-treated group (received 40 mg/kg/d of BPA and 300 mg/kg/d of LC, by gavage for 4 weeks). BPA-exposed rats demonstrated structural anomalies in the coronary artery tissue including vacuolation of cells in the media and detachment of the endothelium of the intima. Congestion of blood vessels and infiltration by polynuclear cells were observed in the myocardium. There was an enhanced collagen deposition in both tissues indicating fibrosis. Immunohistochemical changes included enhanced eNOS and caspase-3 expression in the coronary artery and myocardium indicating vascular disease and apoptosis, respectively. Oxidative damage was evident in the coronary artery and the myocardium of BPA-treated rats, which was indicated by the reduced level of glutathione (GSH) and elevated malondydehyde (MDA) levels. The coadministration of LC significantly improved BPA-induced structural alterations and oxidative stress. In conclusion, BPA could potentially cause pathologic changes and oxidative damage in the coronary artery and myocardium, which could be improved by LC coadministration.

3.
Sci Rep ; 8(1): 16525, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410011

RESUMO

Pesticide exposure is associated with increased risk of Parkinson's disease (PD). We investigated in Egypt whether common variants in genes involved in pesticide detoxification or transport might modify the risk of PD evoked by pesticide exposure. We recruited 416 PD patients and 445 controls. Information on environmental factors was collected by questionnaire-based structured interviews. Candidate single-nucleotide polymorphisms (SNPs) in 15 pesticide-related genes were genotyped. We analyzed the influence of environmental factors and SNPs as well as the interaction of pesticide exposure and SNPs on the risk of PD. The risk of PD was reduced by coffee consumption [OR = 0.63, 95% CI: 0.43-0.90, P = 0.013] and increased by pesticide exposure [OR = 7.09, 95% CI: 1.12-44.01, P = 0.036]. The SNP rs1126680 in the butyrylcholinesterase gene BCHE reduced the risk of PD irrespective of pesticide exposure [OR = 0.38, 95% CI: 0.20-0.70, P = 0.002]. The SNP rs1803274, defining K-variant BCHE, interacted significantly with pesticide exposure (P = 0.007) and increased the risk of PD only in pesticide-exposed individuals [OR = 2.49, 95% CI: 1.50-4.19, P = 0.0005]. The K-variant BCHE reduces serum activity of butyrylcholinesterase, a known bioscavenger for pesticides. Individuals with K-variant BCHE appear to have an increased risk for PD when exposed to pesticides.


Assuntos
Butirilcolinesterase/genética , Exposição Ambiental/efeitos adversos , Doença de Parkinson/genética , Praguicidas/efeitos adversos , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Butirilcolinesterase/sangue , Estudos de Casos e Controles , Egito , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/etiologia , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...