Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 97: 107643, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35189479

RESUMO

The current research focuses on the treatment of Cr(III), Fe(III) and Cu(II) metal ions with aryl hydrazone ligand named (E)-4-(((diphenylmethylene)hydrazono)methyl)benzene-1,3-diol (DPHB) to afford four novel solid complexes with high yields. Different characterization approaches, including infrared, UV-visible, and NMR spectroscopies, elemental analyses, and thermal gravimetric analysis (TGA), revealed that all mononuclear crystalline metal chelates with good thermal stability had a six-coordination with octahedral geometry. Density Functional Theory (DFT) computations were used and provided a reasonable explanation for these metal chelates' electrical and structural features. Furthermore, investigations of electronic absorption spectroscopy, hydrodynamics, and electrophoresis demonstrated that these new compounds interact with calf thymus deoxyribonucleic acid (CT-DNA) in a variety of ways. As a result, the Kb and ∆Gb≠ values of such interactions were in the following order: DPHBCu > DPHBCr > DPHBFe complex. Additionally, the novel metal chelates have been studied anti-bathogenically and found to be significantly effective compared to the comparable DPHB hydrazone ligand. The anti-proliferative activities of the investigated compounds were also evaluated against different lines of cancer cells and exhibited significant cytotoxic activity. In addition, observations of antioxidant activity suggest that antioxidant activity relative to ordinary ascorbic acid was demonstrated in the molecule.


Assuntos
Compostos Férricos , Hidrazonas , DNA/química , Teoria da Densidade Funcional , Hidrazonas/farmacologia , Ligantes , Testes de Sensibilidade Microbiana
2.
Bioorg Chem ; 69: 140-152, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27816797

RESUMO

The complexes of Fe(II), Cd(II) and Zn(II) with Schiff base derived from 2-amino-3-hydroxypyridine and 3-methoxysalicylaldehyde have been prepared. Melting points, decomposition temperatures, Elemental analyses, TGA, conductance measurements, infrared (IR) and UV-Visible spectrophotometric studies were utilized in characterizing the compounds. The UV-Visible spectrophotometric analysis revealed 1:1 (metal-ligand) stoichiometry for the three complexes. In addition to, the prepared complexes have been used as precursors for preparing their corresponding metal oxides nanoparticles via thermal decomposition. The structures of the nano-sized complexes and their metal oxides were characterized by X-ray powder diffraction and transmittance electron microscopy. Moreover, the prepared Schiff base ligand, its complexes and their corresponding nano-sized metal oxides have been screened in vitro for their antibacterial activity against three bacteria, gram-positive (Microccus luteus) and gram-negative (Escherichia coli, Serratia marcescence) and three strains of fungus. The metal chelates were shown to possess more antimicrobial activity than the free Schiff-base chelate and their nano-sized metal oxides have the highest activity. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity mensuration and gel electrophoresis. The DNA binding constants reveal that all these complexes interact with DNA through intercalative binding mode. Furthermore, the cytotoxic activity of the prepared Schiff base complexes on human colon carcinoma cells, (HCT-116 cell line) and hepatic cellular carcinoma cells, (HepG-2) showed potent cytotoxicity effect against growth of carcinoma cells compared to the clinically used Vinblastine standard.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Nanopartículas/química , Compostos Organometálicos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Cádmio/química , Cádmio/farmacologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fungos/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Ferro/química , Ferro/farmacologia , Testes de Sensibilidade Microbiana , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Óxidos/química , Óxidos/farmacologia , Bases de Schiff/química , Bases de Schiff/farmacologia , Relação Estrutura-Atividade , Zinco/química , Zinco/farmacologia
3.
J Photochem Photobiol B ; 162: 298-308, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27395793

RESUMO

Three new nano sized Cu(II), Co(II) and Ni(II) complexes of imine ligand derived from the condensation of 2-amino-3-hydroxypyridine and 3-methoxysalicylaldehyde have been prepared and investigated using various chemical techniques such as NMR, elemental analysis, molar conductance, IR, electronic spectra, TGA and magnetic moment measurements. The obtained chemical analysis data showed that the synthesis of 1:1 (metal:ligand) ratio and octahedral geometry was proposed on the basis of magnetic moment and spectral data studies except the Cu(II) complex which is tetrahedral geometry. Nano-sized particles of the investigated complexes were prepared by sonochemistry method. Furthermore, metal oxides nanoparticles were gained by calcination of the prepared corresponding complexes at 500°C and their structures were characterized by powder x-ray and transmittance electron microscopy. Moreover, the free ligand, its complexes and their metal oxides have been checked in vitro against a number of bacteria and fungi in order to assess their antimicrobial activities. In addition to that, DNA binding of the prepared complexes was tested by many routes such as electronic spectra, viscosity and gel electrophoresis. The results showed that the investigated complexes could bind to DNA via an intercalative mode. The cytotoxicity of the Schiff base complexes on human colon carcinoma cells, (HCT-116 cell line) and Breast carcinoma cells, (MCF-7 cell line) showed potent cytotoxicity effect against growth of carcinoma cells compared to the clinically used Vinblastine standard.


Assuntos
DNA/metabolismo , Iminas/química , Nanoestruturas/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Óxidos/química , Ondas Ultrassônicas , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Quelantes/síntese química , Quelantes/química , Quelantes/metabolismo , Quelantes/farmacologia , Técnicas de Química Sintética , Cobalto/química , Cobre/química , Humanos , Hidrodinâmica , Cinética , Ligantes , Células MCF-7 , Níquel/química , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 117: 366-78, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24001978

RESUMO

In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]·nH2O. The conductivity values between 37 and 64 ohm(-1) mol(-1) cm(2) in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH=7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari>bshi>bsali>bsasi>bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium. The results of these studies indicated that the metal complexes exhibit a stronger antibacterial and antifungal efficiency than their corresponding Schiff base amino acid ligands.


Assuntos
Aminoácidos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Complexos de Coordenação/química , DNA/metabolismo , Compostos Ferrosos/química , Salicilatos/química , Animais , Bactérias/efeitos dos fármacos , Bovinos , Quelantes/química , Quelantes/farmacologia , Complexos de Coordenação/farmacologia , Eletroforese em Gel de Ágar , Fungos/efeitos dos fármacos , Técnicas In Vitro , Modelos Moleculares , Estrutura Molecular , Bases de Schiff/química , Espectrofotometria Infravermelho
5.
Artigo em Inglês | MEDLINE | ID: mdl-23665616

RESUMO

In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL=mono anion and L=dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 µg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi>nari>nali>nasi>nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.


Assuntos
Aminoácidos/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , DNA/metabolismo , Ferro/farmacologia , Bases de Schiff/farmacologia , Teratogênicos/toxicidade , Absorção , Animais , Antibacterianos/química , Antifúngicos/química , Bactérias/efeitos dos fármacos , Bovinos , Embrião de Galinha , Elétrons , Fungos/efeitos dos fármacos , Cinética , Ligantes , Fenômenos Magnéticos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Bases de Schiff/síntese química , Bases de Schiff/química , Espectrofotometria Infravermelho , Termodinâmica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...