Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Chem ; 17(1): 153, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953282

RESUMO

The ligand N-{[(phenyl amino) thioxomethyl] hydrazino carbonyl methyl} trimethyl ammonium chloride (PTHAC) was prepared by the refluxing phenyl isothiocyanate and Girard-T (trimethyl ammonium-acethydrazide) in a molar ratio (1:1). The metal complexes derived from NiCl2.6H2O, CuCl2.2H2O and Co(CH3COO)2.6H2O were synthesized and purified. The PTHAC and its Cu(II), Co(II), and Ni(II) metal complexes(1-3) were characterized using a variety of various instrumental performances such as elemental analysis, magnetic moment, spectra (IR, UV-Vis, 1H NMR, mass) and thermal analysis (TGA and DTG).The results of element analysis, magnetic moment, spectra (IR, UV-Vis, 1H NMR, mass), and thermal (TGA and DTA) analyses provide the structures of the produced ligand and its (1-3) complexes. According to the spectroscopic results, PTHAC acts as an O, N and S tridentate donor, creating a mononuclear complex with copper(II), cobalt(II), and nickel(II) ions with an octahedral geometry. All of the atomic properties, including bond lengths, bond angles, HOMO, LUMO, dipole moments, and charges, have been determined. The cytotoxic activities of the PTHAC and the produced (1-3) complexes against breast carcinoma cells have been studied and correlated to the molecular modeling. When compared to the free ligand, CoII-L, and NiII-L, the CuII-L complex inhibits breast cancer cell growth more effectively. Furthermore, the PTHAC ligand was successfully applied for separation via flotation and spectrophotometric determination of Co(II) in several natural water, certified ore and pharmaceutical samples using oleic acid surfactant (HOL). At pH 6.5, PTHAC reacted with Co(II) to create a dark green (1:1) Co(II):PTHAC complex that was floated significantly using oleic acid (HOL) surfactant. The different experimental variable affecting the separation procedure e.g. pH, concentration of Co(II), HOL, PTHAC, temperature etc.…, were investigated. Co(II) had a linear range of (0.1-7.0) mgL-1. In the aqueous and scum layers, the molar absorptivities for the coloured complex are 0.14 × 104 and 0.16 × 105Lmol-1 cm-1, respectively. The LOD was 0.04 mgL-1, which is related to Sandell sensitivity of 3.7 × 10-3 µg cm-2 with a preconcentration factor of 200 and a RSD, % (n = 5) less than 4.2%. In addition, the mechanisms involved in the process of coordination of PTHAC with Cu(II), Co(II) and Ni(II) and the mechanism involved in the process of flotation of the PTHAC-Co(II) complex using HOL surfactant were elucidated.

2.
Sci Rep ; 12(1): 17451, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261667

RESUMO

A novel nano-palladium (II) Schiff base complex (C1) is synthesized by the reaction between palladium chloride and the Schiff base N, N'-1, 2-phenylene) bis (3 -aminobenzamide (A1). The prepared compounds were characterized by elemental analysis, Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Thermogravimetric Analysis (TGA). A combined solvent sublation-ICP OES methodology has been studied for the preconcentration, separation and determination of trace palladium (II) in media of diverse origin using the Schiff base ligand (A1). The different experimental variables that affect the sublation efficiency (S, %) were thoroughly investigated viz.: pH of sample solution; amounts of A1, Pd (II) and TBAB; type and amounts of surfactants, types of organic solvent, temperature and stirring time. The method involves the determination of trace palladium (II) after selective separation by solvent sublation, thus eliminating the effect of foreign ions and increasing the sensitivity. Also, palladium is determined directly in the organic phase, which decreases the determination time and its loss during determination. At optimum conditions, the linear range of Pd (II) was 10.0-100.0 ngmL-1. The coefficient of determination, the limit of detection (LOD) and limit of quantification (LOQ) were 0.9943, 21.29 ngL-1 and 64.5 ngL-1, respectively. This sublation method was applied to real samples and recoveries of more than 95% were obtained in the spiked samples with a preconcentration factor of 100. The mechanism of solvent sublatation of the TBA.[PdII-(A1)2] ion pairs is discussed. The computational studying was estimated to approve the geometry of the isolated solid compounds.


Assuntos
Bases de Schiff , Tensoativos , Bases de Schiff/química , Ligantes , Concentração de Íons de Hidrogênio , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Íons
3.
Dalton Trans ; 49(44): 15769-15778, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33146200

RESUMO

Worldwide, prostate cancer is considered to be one of the three most commonly occurring cancers amongst the male population. Clinically, early detection of diverse forms of cancer before they spread and become incurable plays an important role in treatment strategy. Therefore, the development of fast, accurate, sensitive, and low-cost analytical methodologies and techniques for the detection of cancer biomarkers is an attractive research area for scientists globally. Herein, a Schiff base ligand (A1) was prepared via the refluxing of 3-aminobenzoic acid with 1,2-phenylenediamine. After that, a nano Cu complex (N1) was synthesized by reacting A1 with copper chloride. The produced A1 and N1 were characterized using several techniques to determine their physicochemical properties. A density functional theory study was carried out to rationalize the experimental work and support the obtained results. Moreover, the nano Cu complex (N1) was used for the fabrication of a potentiometric membrane biosensor for the early detection of the prostate-specific antigen (PSA). The results reveal that the electrode displays a stable Nernstian response of 29.26 ± 0.87 mV per decade for PSA in a linear dynamic range of 5.0 pg mL-1-10.0 ng mL-1, in a pH range of 6.5-9.2, with a short response time of 25 ± 5 s. The lifetime was between 5-7 weeks under different storage conditions. The detection (LOD) and quantification (LOQ) limits were 0.098 and 0.297 pg mL-1, respectively. The presence of different interfering species on the potentiometric biosensor response against PSA was investigated. The sensing mechanism of N1 toward PSA and the applicability of the developed electrode for the screening and quantification of PSA in real serum samples were also studied.


Assuntos
Análise Química do Sangue/métodos , Complexos de Coordenação/química , Cobre/química , Teoria da Densidade Funcional , Limite de Detecção , Nanoestruturas/química , Antígeno Prostático Específico/sangue , Detecção Precoce de Câncer , Humanos , Ligantes , Masculino , Modelos Moleculares , Conformação Molecular , Potenciometria , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Bases de Schiff/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...