Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735474

RESUMO

FOXK2 is a crucial transcription factor implicated in a wide array of biological activities and yet understanding of its molecular regulation at the level of protein turnover is limited. Here, we identify that FOXK2 undergoes degradation in lung epithelia in the presence of the virulent pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae through ubiquitin-proteasomal processing. FOXK2 through its carboxyl terminus (aa 428-478) binds the Skp-Cullin-F-box ubiquitin E3 ligase subunit FBXO24 that mediates multisite polyubiquitylation of the transcription factor resulting in its nuclear degradation. FOXK2 was detected within the mitochondria and targeted depletion of the transcription factor or cellular expression of FOXK2 mutants devoid of key carboxy terminal domains significantly impaired mitochondrial function. In experimental bacterial pneumonia, Fbxo24 heterozygous mice exhibited preserved mitochondrial function and Foxk2 protein levels compared to WT littermates. The results suggest a new mode of regulatory control of mitochondrial energetics through modulation of FOXK2 cellular abundance.


Assuntos
Fatores de Transcrição Forkhead , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Humanos , Proteólise , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitinação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Respiração Celular
2.
Electrophoresis ; 37(14): 2083-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27145186

RESUMO

Stereospecific capillary electrophoresis-based methods for the analysis of methionine sulfoxide [Met(O)]-containing pentapeptides were developed in order to investigate the reduction of Met(O)-containing peptide substrates by recombinant Aspergillus nidulans methionine sulfoxide reductase A (MsrA) as well as enzymes carrying mutations in position Glu99 and Asp134. The separation of the diastereomers of the N-acetylated, C-terminally 2,4-dinitrophenyl (Dnp)-labeled pentapeptides ac-Lys-Phe-Met(O)-Lys-Lys-Dnp, ac-Lys-Asp-Met(O)-Asn-Lys-Dnp and ac-Lys-Asn-Met(O)-Asp-Lys-Dnp was achieved in 50 mM Tris-HCl buffers containing sulfated ß-CD in fused-silica capillaries, while the diastereomer separation of ac-Lys-Asp-Met(O)-Asp-Lys-Dnp was achieved by sulfated ß-CD-mediated MEKC. The methods were validated with regard to range, linearity, accuracy, limits of detection and quantitation as well as precision. Subsequently, the substrates were incubated with wild-type MsrA and three mutants in the presence of dithiothreitol as reductant. Wild-type MsrA displayed the highest activity towards all substrates compared to the mutants. Substitution of Glu99 by Gln resulted in the mutant with the lowest activity towards all substrates except for ac-Lys-Asn-Met(O)-Asp-Lys-Dnp, while replacement Asn for Asp134 lead to a higher activity towards ac-Lys-Asp-Met(O)-Asn-Lys-Dnp compared with the Glu99 mutant. The mutant with Glu instead of Asp134 was the most active among the mutant enzymes. Molecular modeling indicated that the conserved Glu99 residue is buried in the Met-S-(O) groove, which might contribute to the correct placing of substrates and, consequently, to the catalytic activity of MsrA, while Asp134 did not form hydrogen bonds with the substrates but only within the enzyme.


Assuntos
Aspergillus nidulans/enzimologia , Eletroforese Capilar/métodos , Metionina Sulfóxido Redutases/metabolismo , Mutação , Oligopeptídeos/análise , Limite de Detecção , Metionina Sulfóxido Redutases/genética , Reprodutibilidade dos Testes , Especificidade por Substrato
3.
J Chromatogr A ; 1359: 224-9, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25064531

RESUMO

A capillary electrophoresis method has been developed and validated to evaluate the stereospecific activity of recombinant human methionine sulfoxide reductase enzymes employing the C-terminally dinitrophenyl-labeled N-acetylated pentapeptide ac-KIFM(O)K-Dnp as substrate (M(O)=methionine sulfoxide). The separation of the ac-KIFM(O)K-Dnp diastereomers and the reduced peptide ac-KIFMK-Dnp was optimized using experimental design with regard to the buffer pH, buffer concentration, sulfated ß-cyclodextrin and 15-crown-5 concentration as well as capillary temperature and separation voltage. A fractional factorial response IV design was employed for the identification of the significant factors and a five-level circumscribed central composite design for the final method optimization. Resolution of the peptide diastereomers as well as analyte migration time served as responses in both designs. The resulting optimized conditions included 50mM Tris buffer, pH 7.85, containing 5mM 15-crown-5 and 14.3mg/mL sulfated ß-cyclodextrin, at an applied voltage of 25kV and a capillary temperature of 21.5°C. The assay was subsequently applied to the determination of the stereospecificity of recombinant human methionine sulfoxide reductases A and B2. The Michaelis-Menten kinetic data were determined. The pentapeptide proved to be a good substrate for both enzymes. Furthermore, the first separation of methionine sulfoxide peptide diastereomers is reported.


Assuntos
Eletroforese Capilar/métodos , Metionina Sulfóxido Redutases/química , Peptídeos/química , Eletroforese Capilar/instrumentação , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metionina/análogos & derivados , Metionina/química , Estereoisomerismo , Especificidade por Substrato
4.
Anal Bioanal Chem ; 406(6): 1723-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24424966

RESUMO

An electrophoretically mediated microanalysis assay (EMMA) for the determination of the stereoselective reduction of L-methionine sulfoxide diastereomers by methionine sulfoxide reductase enzymes was developed using fluorenylmethyloxycarbonyl (Fmoc)-L-methionine sulfoxide as substrate. The separation of the diastereomers of Fmoc-L-methionine sulfoxide and the product Fmoc-L-methionine was achieved in a successive multiple ionic-polymer layer-coated capillary using a 50 mM Tris buffer, pH 8.0, containing 30 mM sodium dodecyl sulfate as background electrolyte and an applied voltage of 25 kV. 4-Aminobenzoic acid was employed as internal standard. An injection sequence of incubation buffer, enzyme, substrate, enzyme, and incubation buffer was selected. The assay was optimized with regard to mixing time and mixing voltage and subsequently applied for the analysis of stereoselective reduction of Fmoc-L-methionine-(S)-sulfoxide by human methionine sulfoxide reductase A and of the Fmoc-L-methionine-(R)-sulfoxide by human methionine sulfoxide reductase B. The Michaelis-Menten constant, K m, and the maximum velocity, v max, were determined. Essentially identical data were determined by the electrophoretically mediated microanalysis assay and the analysis of the samples by CE upon offline incubation. Furthermore, it was shown for the first time that Fmoc-methionine-(R)-sulfoxide is a substrate of human methionine sulfoxide reductase B.


Assuntos
Eletroforese Capilar/métodos , Ensaios Enzimáticos/métodos , Metionina Sulfóxido Redutases/metabolismo , Metionina/análogos & derivados , Fatores de Transcrição/metabolismo , Humanos , Cinética , Metionina/química , Metionina/metabolismo , Proteínas dos Microfilamentos , Modelos Moleculares , Estereoisomerismo
5.
Electrophoresis ; 34(18): 2712-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23775584

RESUMO

A micellar electrokinetic chromatography method for the analysis of the l-methionine sulfoxide diastereomers employing a successive multiple ionic-polymer layer coated fused-silica capillary was developed and validated in order to investigate the stereospecificity of methionine sulfoxide reductases. The capillary coating consisted of a first layer of hexadimethrine and a second layer of dextran sulfate providing a stable strong cathodic EOF and consequently highly repeatable analyte migration times. The methionine sulfoxide diastereomers, methionine as product as well as ß-alanine as internal standard were derivatized by dabsyl chloride and separated using a 35 mM sodium phosphate buffer, pH 8.0, containing 25 mM SDS as BGE and a separation voltage of 25 kV. The method was validated in the range of 0.15-2.0 mM with respect to linearity and precision. The LODs of the analytes ranged between 0.04 and 0.10 mM. The assay was subsequently applied to determine the stereospecificity of methionine sulfoxide reductases as well as the enzyme kinetics of human methionine sulfoxide reductase A. Monitoring the decrease of the l-methionine-(S)-sulfoxide Km = 411.8 ± 33.8 µM and Vmax = 307.5 ± 10.8 µM/min were determined.


Assuntos
Cromatografia Capilar Eletrocinética Micelar/instrumentação , Cromatografia Capilar Eletrocinética Micelar/métodos , Metionina Sulfóxido Redutases/metabolismo , Eletro-Osmose , Ensaios Enzimáticos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Limite de Detecção , Metionina/análogos & derivados , Metionina/análise , Metionina/química , Metionina/metabolismo , Metionina Sulfóxido Redutases/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...