Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malariaworld J ; 1: 2, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-38826687

RESUMO

Background: In Sudan, the Sterile Insect Technique (SIT) is being developed to suppress populations of Anopheles arabiensis. The present study was carried out to evaluate the impact of long-term colonisation, irradiation, and transportation on male vigour and mating competitiveness under controlled semi-field conditions. Materials and Methods: Male mosquitoes were irradiated in Khartoum as pupae and transported 400 km to the field site in Dongola. Wild males and females were collected as immature stages (larvae and pupae) from the field site and sexed immediately after adult emergence. Competition experiments were carried out to test the mating competitiveness and vigour of colonised males (non-irradiated or irradiated) against wild conspecifics in the semi-field system. Results: Mortality resulting from packaging and transportation from Khartoum to Dongola was low for adults (1.1% for irradiated and 1.3% for non-irradiated males). In contrast, all irradiated pupae died on their way to the field site. On average, 54.9% females were inseminated after one night. There were no differences between the number of females inseminated by colony males and those inseminated by wild males. Only a slightly significant difference between the numbers of females inseminated by irradiated males (14.0±1.7) or by wild males (19.7±1.7) was observed. However, the competitive index (CI) for irradiated and colony males when competed with wild males were 0.71 and 0.81 respectively. Conclusions: Packing and transportation methods for pupae need to be improved. Prolonged colonisation (68 generations), irradiation and transportation of adult males did not affect their ability to locate virgin females and compete against wild conspecifics. Irradiation, in contrast to many reports, only had a marginal effect on released males during the first night after their release. These findings support the feasibility of staging an SIT campaign against this malaria vector.

2.
Malar J ; 7: 65, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18439238

RESUMO

BACKGROUND: The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. METHODS: Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. RESULTS: Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. CONCLUSION: It is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale irradiation and transportation of insects in the current setting. The field cage is suitable for experiments and studies to test the competitiveness of irradiated males can be pursued. The scaling up of procedures to accommodate much larger numbers of insects needed for a release is the next challenge and recommendations to further implementation of this genetic control strategy are presented.


Assuntos
Anopheles/fisiologia , Anopheles/efeitos da radiação , Raios gama , Insetos Vetores/fisiologia , Insetos Vetores/efeitos da radiação , Controle de Mosquitos/métodos , Animais , Tamanho Corporal , Relação Dose-Resposta à Radiação , Feminino , Fertilidade/efeitos da radiação , Larva , Masculino , Comportamento Sexual Animal , Sudão , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...