Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(15): eabd1700, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427151

RESUMO

To develop an in vivo tool to probe brain genotoxic stress, we designed a viral proxy as a single-cell genetic sensor termed PRISM that harnesses the instability of recombinant adeno-associated virus genome processing and a hypermutable repeat sequence-dependent reporter. PRISM exploits the virus-host interaction to probe persistent neuronal DNA damage and overactive DNA damage response. A Parkinson's disease (PD)-associated environmental toxicant, paraquat (PQ), inflicted neuronal genotoxic stress sensitively detected by PRISM. The most affected cell type in PD, dopaminergic (DA) neurons in substantia nigra, was distinguished by a high level of genotoxic stress following PQ exposure. Human alpha-synuclein proteotoxicity and propagation also triggered genotoxic stress in nigral DA neurons in a transgenic mouse model. Genotoxic stress is a prominent feature in PD patient brains. Our results reveal that PD-associated etiological factors precipitated brain genotoxic stress and detail a useful tool for probing the pathogenic significance in aging and neurodegenerative disorders.


Assuntos
Doença de Parkinson , Animais , Encéfalo/metabolismo , Dano ao DNA , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Paraquat/metabolismo , Paraquat/toxicidade , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
2.
Mol Psychiatry ; 24(12): 1884-1901, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31444475

RESUMO

Recent genome-wide association studies (GWAS) have identified copy number variations (CNVs) at chromosomal locus 7q36.3 that significantly contribute to the risk of schizophrenia, with all of the microduplications occurring within a single gene: vasoactive intestinal peptide receptor 2 (VIPR2). To confirm disease causality and translate such a genetic vulnerability into mechanistic and pathophysiological insights, we have developed a series of conditional VIPR2 bacterial artificial chromosome (BAC) transgenic mouse models of VIPR2 CNV. VIPR2 CNV mouse model recapitulates gene expression and signaling deficits seen in human CNV carriers. VIPR2 microduplication in mice elicits prominent dorsal striatal dopamine dysfunction, cognitive, sensorimotor gating, and social behavioral deficits preceded by an increase of striatal cAMP/PKA signaling and the disrupted early postnatal striatal development. Genetic removal of VIPR2 transgene expression via crossing with Drd1a-Cre BAC transgenic mice rescued the dopamine D2 receptor abnormality and multiple behavioral deficits, implicating a pathogenic role of VIPR2 overexpression in dopaminoceptive neurons. Thus, our results provide further evidence to support the GWAS studies that the dosage sensitivity intolerance of VIPR2 is disease causative to manifest schizophrenia-like dopamine, cognitive, and social behavioral deficits in mice. The conditional BAC transgenesis offers a novel strategy to model CNVs with a gain-of -copies and facilitate the genetic dissection of when/where/how the genetic vulnerabilities affect development, structure, and function of neural circuits. Our findings have important implications for therapeutic development, and the etiology-relevant mouse model provides a useful preclinical platform for drug discovery.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Animais , Cromossomos Artificiais Bacterianos/genética , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Duplicação Gênica/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo
3.
In Silico Pharmacol ; 3(1): 6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26820891

RESUMO

PURPOSE: For 30 years nature has provided a plethora of natural products with potential meaningful anti-cancer activity. Fusarochromanone (FC101a) is a small molecule fungal metabolite exhibiting potent in-vitro growth inhibitory effects and is capable of inducing apoptosis, suppressing angiogenesis and tumorigenesis, and inhibiting endothelial cell growth in multiple cancer cell lines. Despite all we know regarding FC101a, the mechanism of action and molecular target(s) of this compound have remained an enigma. Furthermore, modest in-vivo activity has been documented and requires addressing. METHOD: Early stage pharmacokinetics (PK) assessment is vital to successful drug development. Herein, we aimed to use in-silico assays to i) characterize an in-depth ADMET profile of FC101a and ii) to probe for possible therapeutic targets. Two-dimensional SDF files of FC101a and 13 analogs were introduced into ADMET Predictor Version 7.1 that parses the structures in order to calculate molecular descriptors, which are used to estimate ADMET properties. Calculated ADMET values were analyzed and subjected to multiple drug-like indices, delivering a PK profile of each analog. To probe for possible targets, a total of 49 proteins were introduced into SYBYL-X Version 2.0 platform and the deepest binding pocket of each protein was virtually docked with parent compound, FC101a; with the negative control, FC101b; and with the model compound, kynurenine. RESULTS: Each analog showed promising ADMET qualities, although FC101 Oxazole was identified as the most optimized analog. Despite FC101a having a desirable ADME and toxicity profile, areas of concern were identified and must be addressed in-vitro. These include potential mutagenic properties and estrogen receptor toxicity. We provide potential avenues medicinal chemists could use to achieve higher effective permeation, higher blood brain barrier (BBB) penetration, and higher aqueous solubility in FC101a. Molecular docking assays revealed procaspase-8 - cFLIP(L) complex as a potential biological target and led to proposed mechanisms of action by which FC101a facilitates procaspase-8 heterodimerization, thereby increasing proteolytic activity and up regulating extrinsic apoptosis. CONCLUSION: Our data revealed both potential mechanisms of action and a promising ADMET profile of FC101a. These attributes render FC101a a promising lead candidate for development into a low toxic anti-cancer agent effective against a broad range of cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...