Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Rep ; 14(1): 4275, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383597

RESUMO

The challenge of making flexible, standard, and early medical diagnoses is significant. However, some limitations are not fully overcome. First, the diagnosis rules established by medical experts or learned from a trained dataset prove static and too general. It leads to decisions that lack adaptive flexibility when finding new circumstances. Secondly, medical terminological interoperability is highly critical. It increases realism and medical progress and avoids isolated systems and the difficulty of data exchange, analysis, and interpretation. Third, criteria for diagnosis are often heterogeneous and changeable. It includes symptoms, patient history, demographic, treatment, genetics, biochemistry, and imaging. Symptoms represent a high-impact indicator for early detection. It is important that we deal with these symptoms differently, which have a great relationship with semantics, vary widely, and have linguistic information. This negatively affects early diagnosis decision-making. Depending on the circumstances, the diagnosis is made solo on imaging and some medical tests. In this case, although the accuracy of the diagnosis is very high, can these decisions be considered an early diagnosis or prove the condition is deteriorating? Our contribution in this paper is to present a real medical diagnostic system based on semantics, fuzzy, and dynamic decision rules. We attempt to integrate ontology semantics reasoning and fuzzy inference. It promotes fuzzy reasoning and handles knowledge representation problems. In complications and symptoms, ontological semantic reasoning improves the process of evaluating rules in terms of interpretability, dynamism, and intelligence. A real-world case study, ADNI, is presented involving the field of Alzheimer's disease (AD). The proposed system has indicated the possibility of the system to diagnose AD with an accuracy of 97.2%, 95.4%, 94.8%, 93.1%, and 96.3% for AD, LMCI, EMCI, SMC, and CN respectively.


Assuntos
Doença de Alzheimer , Semântica , Humanos , Lógica Fuzzy , Linguística , Resolução de Problemas
2.
BMC Med Inform Decis Mak ; 24(1): 23, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267994

RESUMO

Prostate cancer, the most common cancer in men, is influenced by age, family history, genetics, and lifestyle factors. Early detection of prostate cancer using screening methods improves outcomes, but the balance between overdiagnosis and early detection remains debated. Using Deep Learning (DL) algorithms for prostate cancer detection offers a promising solution for accurate and efficient diagnosis, particularly in cases where prostate imaging is challenging. In this paper, we propose a Prostate Cancer Detection Model (PCDM) model for the automatic diagnosis of prostate cancer. It proves its clinical applicability to aid in the early detection and management of prostate cancer in real-world healthcare environments. The PCDM model is a modified ResNet50-based architecture that integrates faster R-CNN and dual optimizers to improve the performance of the detection process. The model is trained on a large dataset of annotated medical images, and the experimental results show that the proposed model outperforms both ResNet50 and VGG19 architectures. Specifically, the proposed model achieves high sensitivity, specificity, precision, and accuracy rates of 97.40%, 97.09%, 97.56%, and 95.24%, respectively.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Algoritmos , Instalações de Saúde
3.
Front Plant Sci ; 14: 1212747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900756

RESUMO

Introduction: Recently, plant disease detection and diagnosis procedures have become a primary agricultural concern. Early detection of plant diseases enables farmers to take preventative action, stopping the disease's transmission to other plant sections. Plant diseases are a severe hazard to food safety, but because the essential infrastructure is missing in various places around the globe, quick disease diagnosis is still difficult. The plant may experience a variety of attacks, from minor damage to total devastation, depending on how severe the infections are. Thus, early detection of plant diseases is necessary to optimize output to prevent such destruction. The physical examination of plant diseases produced low accuracy, required a lot of time, and could not accurately anticipate the plant disease. Creating an automated method capable of accurately classifying to deal with these issues is vital. Method: This research proposes an efficient, novel, and lightweight DeepPlantNet deep learning (DL)-based architecture for predicting and categorizing plant leaf diseases. The proposed DeepPlantNet model comprises 28 learned layers, i.e., 25 convolutional layers (ConV) and three fully connected (FC) layers. The framework employed Leaky RelU (LReLU), batch normalization (BN), fire modules, and a mix of 3×3 and 1×1 filters, making it a novel plant disease classification framework. The Proposed DeepPlantNet model can categorize plant disease images into many classifications. Results: The proposed approach categorizes the plant diseases into the following ten groups: Apple_Black_rot (ABR), Cherry_(including_sour)_Powdery_mildew (CPM), Grape_Leaf_blight_(Isariopsis_Leaf_Spot) (GLB), Peach_Bacterial_spot (PBS), Pepper_bell_Bacterial_spot (PBBS), Potato_Early_blight (PEB), Squash_Powdery_mildew (SPM), Strawberry_Leaf_scorch (SLS), bacterial tomato spot (TBS), and maize common rust (MCR). The proposed framework achieved an average accuracy of 98.49 and 99.85in the case of eight-class and three-class classification schemes, respectively. Discussion: The experimental findings demonstrated the DeepPlantNet model's superiority to the alternatives. The proposed technique can reduce financial and agricultural output losses by quickly and effectively assisting professionals and farmers in identifying plant leaf diseases.

5.
Diagnostics (Basel) ; 13(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37761306

RESUMO

Colon cancer is the third most common cancer type worldwide in 2020, almost two million cases were diagnosed. As a result, providing new, highly accurate techniques in detecting colon cancer leads to early and successful treatment of this disease. This paper aims to propose a heterogenic stacking deep learning model to predict colon cancer. Stacking deep learning is integrated with pretrained convolutional neural network (CNN) models with a metalearner to enhance colon cancer prediction performance. The proposed model is compared with VGG16, InceptionV3, Resnet50, and DenseNet121 using different evaluation metrics. Furthermore, the proposed models are evaluated using the LC25000 and WCE binary and muticlassified colon cancer image datasets. The results show that the stacking models recorded the highest performance for the two datasets. For the LC25000 dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (100). For the WCE colon image dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (98). Stacking-SVM achieved the highest performed compared to existing models (VGG16, InceptionV3, Resnet50, and DenseNet121) because it combines the output of multiple single models and trains and evaluates a metalearner using the output to produce better predictive results than any single model. Black-box deep learning models are represented using explainable AI (XAI).

6.
Sci Rep ; 13(1): 16336, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770490

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Early and accurate detection of AD is crucial to plan for disease modifying therapies that could prevent or delay the conversion to sever stages of the disease. As a chronic disease, patient's multivariate time series data including neuroimaging, genetics, cognitive scores, and neuropsychological battery provides a complete profile about patient's status. This data has been used to build machine learning and deep learning (DL) models for the early detection of the disease. However, these models still have limited performance and are not stable enough to be trusted in real medical settings. Literature shows that DL models outperform classical machine learning models, but ensemble learning has proven to achieve better results than standalone models. This study proposes a novel deep stacking framework which combines multiple DL models to accurately predict AD at an early stage. The study uses long short-term memory (LSTM) models as base models over patient's multivariate time series data to learn the deep longitudinal features. Each base LSTM classifier has been optimized using the Bayesian optimizer using different feature sets. As a result, the final optimized ensembled model employed heterogeneous base models that are trained on heterogeneous data. The performance of the resulting ensemble model has been explored using a cohort of 685 patients from the University of Washington's National Alzheimer's Coordinating Center dataset. Compared to the classical machine learning models and base LSTM classifiers, the proposed ensemble model achieves the highest testing results (i.e., 82.02, 82.25, 82.02, and 82.12 for accuracy, precision, recall, and F1-score, respectively). The resulting model enhances the performance of the state-of-the-art literature, and it could be used to build an accurate clinical decision support tool that can assist domain experts for AD progression detection.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Fatores de Tempo , Teorema de Bayes , Disfunção Cognitiva/diagnóstico , Neuroimagem/métodos , Doença de Alzheimer/diagnóstico por imagem , Computadores
7.
Diagnostics (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37296820

RESUMO

The COVID-19 virus is one of the most devastating illnesses humanity has ever faced. COVID-19 is an infection that is hard to diagnose until it has caused lung damage or blood clots. As a result, it is one of the most insidious diseases due to the lack of knowledge of its symptoms. Artificial intelligence (AI) technologies are being investigated for the early detection of COVID-19 using symptoms and chest X-ray images. Therefore, this work proposes stacking ensemble models using two types of COVID-19 datasets, symptoms and chest X-ray scans, to identify COVID-19. The first proposed model is a stacking ensemble model that is merged from the outputs of pre-trained models in the stacking: multi-layer perceptron (MLP), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU). Stacking trains and evaluates the meta-learner as a support vector machine (SVM) to predict the final decision. Two datasets of COVID-19 symptoms are used to compare the first proposed model with MLP, RNN, LSTM, and GRU models. The second proposed model is a stacking ensemble model that is merged from the outputs of pre-trained DL models in the stacking: VGG16, InceptionV3, Resnet50, and DenseNet121; it uses stacking to train and evaluate the meta-learner (SVM) to identify the final prediction. Two datasets of COVID-19 chest X-ray images are used to compare the second proposed model with other DL models. The result has shown that the proposed models achieve the highest performance compared to other models for each dataset.

8.
Comput Biol Med ; 163: 107154, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364532

RESUMO

Accurate skin lesion diagnosis is critical for the early detection of melanoma. However, the existing approaches are unable to attain substantial levels of accuracy. Recently, pre-trained Deep Learning (DL) models have been applied to tackle and improve efficiency on tasks such as skin cancer detection instead of training models from scratch. Therefore, we develop a robust model for skin cancer detection with a DL-based model as a feature extraction backbone, which is achieved using MobileNetV3 architecture. In addition, a novel algorithm called the Improved Artificial Rabbits Optimizer (IARO) is introduced, which uses the Gaussian mutation and crossover operator to ignore the unimportant features from those features extracted using MobileNetV3. The PH2, ISIC-2016, and HAM10000 datasets are used to validate the developed approach's efficiency. The empirical results show that the developed approach yields outstanding accuracy results of 87.17% on the ISIC-2016 dataset, 96.79% on the PH2 dataset, and 88.71 % on the HAM10000 dataset. Experiments show that the IARO can significantly improve the prediction of skin cancer.


Assuntos
Melanoma , Dermatopatias , Neoplasias Cutâneas , Animais , Coelhos , Dermoscopia/métodos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patologia , Algoritmos
9.
Diagnostics (Basel) ; 13(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37189606

RESUMO

Polycystic ovary syndrome (PCOS) has been classified as a severe health problem common among women globally. Early detection and treatment of PCOS reduce the possibility of long-term complications, such as increasing the chances of developing type 2 diabetes and gestational diabetes. Therefore, effective and early PCOS diagnosis will help the healthcare systems to reduce the disease's problems and complications. Machine learning (ML) and ensemble learning have recently shown promising results in medical diagnostics. The main goal of our research is to provide model explanations to ensure efficiency, effectiveness, and trust in the developed model through local and global explanations. Feature selection methods with different types of ML models (logistic regression (LR), random forest (RF), decision tree (DT), naive Bayes (NB), support vector machine (SVM), k-nearest neighbor (KNN), xgboost, and Adaboost algorithm to get optimal feature selection and best model. Stacking ML models that combine the best base ML models with meta-learner are proposed to improve performance. Bayesian optimization is used to optimize ML models. Combining SMOTE (Synthetic Minority Oversampling Techniques) and ENN (Edited Nearest Neighbour) solves the class imbalance. The experimental results were made using a benchmark PCOS dataset with two ratios splitting 70:30 and 80:20. The result showed that the Stacking ML with REF feature selection recorded the highest accuracy at 100 compared to other models.

10.
PLoS One ; 18(5): e0285455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167226

RESUMO

This study aims to predict head trauma outcome for Neurosurgical patients in children, adults, and elderly people. As Machine Learning (ML) algorithms are helpful in healthcare field, a comparative study of various ML techniques is developed. Several algorithms are utilized such as k-nearest neighbor, Random Forest (RF), C4.5, Artificial Neural Network, and Support Vector Machine (SVM). Their performance is assessed using anonymous patients' data. Then, a proposed double classifier based on Henry Gas Solubility Optimization (HGSO) is developed with Aquila optimizer (AQO). It is implemented for feature selection to classify patients' outcome status into four states. Those are mortality, morbidity, improved, or the same. The double classifiers are evaluated via various performance metrics including recall, precision, F-measure, accuracy, and sensitivity. Another contribution of this research is the original use of hybrid technique based on RF-SVM and HGSO to predict patient outcome status with high accuracy. It determines outcome status relationship with age and mode of trauma. The algorithm is tested on more than 1000 anonymous patients' data taken from a Neurosurgical unit of Mansoura International Hospital, Egypt. Experimental results show that the proposed method has the highest accuracy of 99.2% (with population size = 30) compared with other classifiers.


Assuntos
Algoritmos , Aprendizado de Máquina , Adulto , Criança , Humanos , Idoso , Solubilidade , Redes Neurais de Computação , Algoritmo Florestas Aleatórias , Máquina de Vetores de Suporte
11.
Comput Methods Programs Biomed ; 234: 107495, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003039

RESUMO

BACKGROUND AND OBJECTIVES: Parkinson's Disease (PD) is a devastating chronic neurological condition. Machine learning (ML) techniques have been used in the early prediction of PD progression. Fusion of heterogeneous data modalities proved its capability to improve the performance of ML models. Time series data fusion supports the tracking of the disease over time. In addition, the trustworthiness of the resulting models is improved by adding model explainability features. The literature on PD has not sufficiently explored these three points. METHODS: In this work, we proposed an ML pipeline for predicting the progression of PD that is both accurate and explainable. We explore the fusion of different combinations of five time series modalities from the Parkinson's Progression Markers Initiative (PPMI) real-world dataset, including patient characteristics, biosamples, medication history, motor, and non-motor function data. Each patient has six visits. The problem has been formulated in two ways: ❶ a three-class based progression prediction with 953 patients in each time series modality, and ❷ a four-class based progression prediction with 1,060 patients in each time series modality. The statistical features of these six visits were calculated from each modality and diverse feature selection methods were applied to select the most informative feature sets. The extracted features were used to train a set of well-known ML models including Support vector machines (SVM), random forests (RF), extra tree classifier (ETC), light gradient boosting machines (LGBM), and stochastic gradient descent (SGD). We examined a number of data-balancing strategies in the pipeline with different combinations of modalities. ML models have been optimized using the Bayesian optimizer. A comprehensive evaluation of various ML methods has been conducted, and the best models have been extended to provide different explainability features. RESULTS: We compare the performance of ML models before and after optimization and using and without using feature selection. In the three-class experiment and with various modality fusions, the LGBM model produced the most accurate results with a 10-fold cross-validation (10-CV) accuracy of 90.73% using non-motor function modality. RF produced the best results in the four-class experiment with various modality fusions with a 10-CV accuracy of 94.57% using non-motor modality. With the fused dataset of non-motor and motor function modalities, the LGBM model outperformed the other ML models in both the 3-class and 4-class experiments (i.e., 10-CV accuracy of 94.89% and 93.73%, respectively). Using the Shapely Additive Explanations (SHAP) framework, we employed global and instance-based explanations to explain the behavior of each ML classifier. Moreover, we extended the explainability by implementing the LIME and SHAPASH local explainers. The consistency of these explainers has been explored. The resultant classifiers were accurate, explainable, and thus medically more relevant and applicable. CONCLUSIONS: The select modalities and feature sets were confirmed by the literature and medical experts. The various explainers suggest that the bradykinesia (NP3BRADY) feature was the most dominant and consistent. By providing thorough insights into the influence of multiple modalities on the disease risk, the suggested approach is expected to help improve the clinical knowledge of PD progression processes.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Teorema de Bayes , Fatores de Tempo , Aprendizado de Máquina , Algoritmo Florestas Aleatórias
12.
Diagnostics (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766597

RESUMO

Carpal tunnel syndrome (CTS) is a clinical disease that occurs due to compression of the median nerve in the carpal tunnel. The determination of the severity of carpal tunnel syndrome is essential to provide appropriate therapeutic interventions. Machine learning (ML)-based modeling can be used to classify diseases, make decisions, and create new therapeutic interventions. It is also used in medical research to implement predictive models. However, despite the growth in medical research based on ML and Deep Learning (DL), CTS research is still relatively scarce. While a few studies have developed models to predict diagnosis of CTS, no ML model has been presented to classify the severity of CTS based on comprehensive clinical data. Therefore, this study developed new classification models for determining CTS severity using ML algorithms. This study included 80 patients with other diseases that have an overlap in symptoms with CTS, such as cervical radiculopathysasas, de quervian tendinopathy, and peripheral neuropathy, and 80 CTS patients who underwent ultrasonography (US)-guided median nerve hydrodissection. CTS severity was classified into mild, moderate, and severe grades. In our study, we aggregated the data from CTS patients and patients with other diseases that have an overlap in symptoms with CTS, such as cervical radiculopathysasas, de quervian tendinopathy, and peripheral neuropathy. The dataset was randomly split into training and test data, at 70% and 30%, respectively. The proposed model achieved promising results of 0.955%, 0.963%, and 0.919% in terms of classification accuracy, precision, and recall, respectively. In addition, we developed a machine learning model that predicts the probability of a patient improving after the hydro-dissection injection process based on the aggregated data after three different months (one, three, and six). The proposed model achieved accuracy after six months of 0.912%, after three months of 0.901%, and after one month 0.877%. The overall performance for predicting the prognosis after six months outperforms the prediction after one and three months. We utilized statistics tests (significance test, Spearman's correlation test, and two-way ANOVA test) to determine the effect of injection process in CTS treatment. Our data-driven decision support tools can be used to help determine which patients to operate on in order to avoid the associated risks and expenses of surgery.

13.
Diagnostics (Basel) ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611454

RESUMO

Early and precise COVID-19 identification and analysis are pivotal in reducing the spread of COVID-19. Medical imaging techniques, such as chest X-ray or chest radiographs, computed tomography (CT) scan, and electrocardiogram (ECG) trace images are the most widely known for early discovery and analysis of the coronavirus disease (COVID-19). Deep learning (DL) frameworks for identifying COVID-19 positive patients in the literature are limited to one data format, either ECG or chest radiograph images. Moreover, using several data types to recover abnormal patterns caused by COVID-19 could potentially provide more information and restrict the spread of the virus. This study presents an effective COVID-19 detection and classification approach using the Shufflenet CNN by employing three types of images, i.e., chest radiograph, CT-scan, and ECG-trace images. For this purpose, we performed extensive classification experiments with the proposed approach using each type of image. With the chest radiograph dataset, we performed three classification experiments at different levels of granularity, i.e., binary, three-class, and four-class classifications. In addition, we performed a binary classification experiment with the proposed approach by classifying CT-scan images into COVID-positive and normal. Finally, utilizing the ECG-trace images, we conducted three experiments at different levels of granularity, i.e., binary, three-class, and five-class classifications. We evaluated the proposed approach with the baseline COVID-19 Radiography Database, SARS-CoV-2 CT-scan, and ECG images dataset of cardiac and COVID-19 patients. The average accuracy of 99.98% for COVID-19 detection in the three-class classification scheme using chest radiographs, optimal accuracy of 100% for COVID-19 detection using CT scans, and average accuracy of 99.37% for five-class classification scheme using ECG trace images have proved the efficacy of our proposed method over the contemporary methods. The optimal accuracy of 100% for COVID-19 detection using CT scans and the accuracy gain of 1.54% (in the case of five-class classification using ECG trace images) from the previous approach, which utilized ECG images for the first time, has a major contribution to improving the COVID-19 prediction rate in early stages. Experimental findings demonstrate that the proposed framework outperforms contemporary models. For example, the proposed approach outperforms state-of-the-art DL approaches, such as Squeezenet, Alexnet, and Darknet19, by achieving the accuracy of 99.98 (proposed method), 98.29, 98.50, and 99.67, respectively.

14.
Sci Rep ; 13(1): 791, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646735

RESUMO

Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder-decoder convolutional neural network (CNN). The first network in the dual encoder-decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network's representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder-decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.


Assuntos
Aprendizado Profundo , Humanos , Raios X , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tórax/diagnóstico por imagem
15.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501951

RESUMO

The treatment and diagnosis of colon cancer are considered to be social and economic challenges due to the high mortality rates. Every year, around the world, almost half a million people contract cancer, including colon cancer. Determining the grade of colon cancer mainly depends on analyzing the gland's structure by tissue region, which has led to the existence of various tests for screening that can be utilized to investigate polyp images and colorectal cancer. This article presents a comprehensive survey on the diagnosis of colon cancer. This covers many aspects related to colon cancer, such as its symptoms and grades as well as the available imaging modalities (particularly, histopathology images used for analysis) in addition to common diagnosis systems. Furthermore, the most widely used datasets and performance evaluation metrics are discussed. We provide a comprehensive review of the current studies on colon cancer, classified into deep-learning (DL) and machine-learning (ML) techniques, and we identify their main strengths and limitations. These techniques provide extensive support for identifying the early stages of cancer that lead to early treatment of the disease and produce a lower mortality rate compared with the rate produced after symptoms develop. In addition, these methods can help to prevent colorectal cancer from progressing through the removal of pre-malignant polyps, which can be achieved using screening tests to make the disease easier to diagnose. Finally, the existing challenges and future research directions that open the way for future work in this field are presented.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Aprendizado Profundo , Humanos , Aprendizado de Máquina , Neoplasias do Colo/diagnóstico
16.
Diagnostics (Basel) ; 12(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36553222

RESUMO

Many epidemics have afflicted humanity throughout history, claiming many lives. It has been noted in our time that heart disease is one of the deadliest diseases that humanity has confronted in the contemporary period. The proliferation of poor habits such as smoking, overeating, and lack of physical activity has contributed to the rise in heart disease. The killing feature of heart disease, which has earned it the moniker the "silent killer," is that it frequently has no apparent signs in advance. As a result, research is required to develop a promising model for the early identification of heart disease using simple data and symptoms. The paper's aim is to propose a deep stacking ensemble model to enhance the performance of the prediction of heart disease. The proposed ensemble model integrates two optimized and pre-trained hybrid deep learning models with the Support Vector Machine (SVM) as the meta-learner model. The first hybrid model is Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) (CNN-LSTM), which integrates CNN and LSTM. The second hybrid model is CNN-GRU, which integrates CNN with a Gated Recurrent Unit (GRU). Recursive Feature Elimination (RFE) is also used for the feature selection optimization process. The proposed model has been optimized and tested using two different heart disease datasets. The proposed ensemble is compared with five machine learning models including Logistic Regression (LR), Random Forest (RF), K-Nearest Neighbors (K-NN), Decision Tree (DT), Naïve Bayes (NB), and hybrid models. In addition, optimization techniques are used to optimize ML, DL, and the proposed models. The results obtained by the proposed model achieved the highest performance using the full feature set.

17.
Front Comput Neurosci ; 16: 1000435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387304

RESUMO

Alzheimer's disease (AD) is a neurodegenerative ailment, which gradually deteriorates memory and weakens the cognitive functions and capacities of the body, such as recall and logic. To diagnose this disease, CT, MRI, PET, etc. are used. However, these methods are time-consuming and sometimes yield inaccurate results. Thus, deep learning models are utilized, which are less time-consuming and yield results with better accuracy, and could be used with ease. This article proposes a transfer learning-based modified inception model with pre-processing methods of normalization and data addition. The proposed model achieved an accuracy of 94.92 and a sensitivity of 94.94. It is concluded from the results that the proposed model performs better than other state-of-the-art models. For training purposes, a Kaggle dataset was used comprising 6,200 images, with 896 mild demented (M.D) images, 64 moderate demented (Mod.D) images, and 3,200 non-demented (N.D) images, and 1,966 veritably mild demented (V.M.D) images. These models could be employed for developing clinically useful results that are suitable to descry announcements in MRI images.

18.
J Biomed Inform ; 135: 104216, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208833

RESUMO

Robust and rabid mortality prediction is crucial in intensive care units because it is considered one of the critical steps for treating patients with serious conditions. Combining mortality prediction with the length of stay (LoS) prediction adds another level of importance to these models. No studies in the literature predict such tasks for neonates, especially using time-series data and dynamic ensemble techniques. Dynamic ensembles are novel techniques that dynamically select the base classifiers for each new case. Medically, implementing an accurate machine learning model is insufficient to gain the trust of physicians. The model must be able to justify its decisions. While explainable AI (XAI) techniques can be used to handle this challenge, no studies have been done in this regard for neonate monitoring in the neonatal intensive care unit (NICU). This study utilizes advanced machine learning approaches to predict mortality and LoS through data-driven learning. We propose a multilayer dynamic ensemble-based model to predict mortality as a classification task and LoS as a regression task for neonates admitted to the NICU. The model has been built based on the patient's time-series data of the first 24 h in the NICU. We utilized a cohort of 3,133 infants from the MIMIC-III real dataset to build and optimize the selected algorithms. It has shown that the dynamic ensemble models achieved better results than other classifiers, and static ensemble regressors achieved better results than classical machine learning regressors. The proposed optimized model is supported by three well-known explainability techniques of SHAP, decision tree visualization, and rule-based system. To provide online assistance to physicians in monitoring and managing neonates in the NICU, we implemented a web-based clinical decision support system based on the most accurate models and selected XAI techniques. The code of the proposed models is publicly available at https://github.com/InfoLab-SKKU/neonateMortalityPrediction.


Assuntos
Algoritmos , Aprendizado de Máquina , Recém-Nascido , Humanos , Unidades de Terapia Intensiva , Unidades de Terapia Intensiva Neonatal , Tempo de Internação
19.
IEEE J Biomed Health Inform ; 26(12): 5793-5804, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36037451

RESUMO

In a hospital, accurate and rapid mortality prediction of Length of Stay (LOS) is essential since it is one of the essential measures in treating patients with severe diseases. When predictions of patient mortality and readmission are combined, these models gain a new level of significance. Therefore, the most expensive components of patient care are LOS and readmission rates. Several studies have assessed readmission to the hospital as a single-task issue. The performance, robustness, and stability of the model increase when many correlated tasks are optimized. This study develops multimodal multitasking Long Short-Term Memory (LSTM) Deep Learning (DL) model that can predict both LOS and readmission for patients using multi-sensory data from 47 patients. Continuous sensory data is divided into eight sections, each of which is recorded for an hour. The time steps are constructed using a dual 10-second window-based technique, resulting in six steps per hour. The 30 statistical features are computed by transforming the sensory input into the resulting vector. The proposed multitasking model predicts 30-day readmission as a binary classification problem and LOS as a regression task by constructing discrete time-step data based on the length of physical activity during a hospital stay. The proposed model is compared to a random forest for a single-task problem (classification or regression) because typical machine learning algorithms are unable to handle the multitasking challenge. In addition, sensory data combined with other cost-effective modalities such as demographics, laboratory tests, and comorbidities to construct reliable models for personalized, cost-effective, and medically acceptable prediction. With a high accuracy of 94.84%, the proposed multitask multimodal DL model classifies the patient's readmission status and determines the patient's LOS in hospital with a minimal Mean Square Error (MSE) of 0.025 and Root Mean Square Error (RMSE) of 0.077, which is promising, effective, and trustworthy.


Assuntos
Aprendizado Profundo , Humanos , Tempo de Internação , Readmissão do Paciente , Análise Custo-Benefício , Aprendizado de Máquina
20.
Sensors (Basel) ; 22(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632116

RESUMO

Sentiment analysis was nominated as a hot research topic a decade ago for its increasing importance in analyzing the people's opinions extracted from social media platforms. Although the Arabic language has a significant share of the content shared across social media platforms, its content's sentiment analysis is still limited due to its complex morphological structures and the varieties of dialects. Traditional machine learning and deep neural algorithms have been used in a variety of studies to predict sentiment analysis. Therefore, a need of changing current mechanisms is required to increase the accuracy of sentiment analysis prediction. This paper proposed an optimized heterogeneous stacking ensemble model for enhancing the performance of Arabic sentiment analysis. The proposed model combines three different of pre-trained Deep Learning (DL) models: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) in conjunction with three meta-learners Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) in order to enhance model's performance for predicting Arabic sentiment analysis. The performance of the proposed model with RNN, LSTM, GRU, and the five regular ML techniques: Decision Tree (DT), LR, K-Nearest Neighbor (KNN), RF, and Naive Bayes (NB) are compared using three benchmarks Arabic dataset. Parameters of Machine Learning (ML) and DL are optimized using Grid search and KerasTuner, respectively. Accuracy, precision, recall, and f1-score were applied to evaluate the performance of the models and validate the results. The results show that the proposed ensemble model has achieved the best performance for each dataset compared with other models.


Assuntos
Aprendizado Profundo , Idioma , Teorema de Bayes , Humanos , Aprendizado de Máquina , Análise de Sentimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...