Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 9(3): 90, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30800601

RESUMO

The beneficial effects of silicon and its role for plants are well established; however, the advantages of silicon nanoparticles over its bulk material are an area that is less explored. Silicon nanoparticles have distinctive physiological characteristics that allow them to enter plants and influence plant metabolic activities. The mesoporous nature of silicon nanoparticles also makes them good candidates as suitable nanocarriers for different molecules that may help in agriculture. Several studies have shown the importance of silicon nanoparticles in agriculture, but an overview of the related aspects was missing. Therefore, this review brings together the literature on silicon nanoparticles and discusses the impact of silicon nanoparticles on several aspects of agricultural sciences. The review also discusses the future application of silicon nanoparticles in plant growth, plant development, and improvement of plant productivity.

2.
Plant Physiol Biochem ; 118: 31-44, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28603082

RESUMO

Improvement of drought stress of mango plants requires intensive research that focuses on physiological processes. In three successive seasons (2014, 2015and 2016) field experiments with four different strains of mango were subjected to two water regimes. The growth and physiological parameters of possible relevance for drought stress tolerances in mango were investigated. Yield and its components were also evaluated. The data showed that all growth and physiological parameters were increased under K2SiO3 (Si) supplement and were followed by the interaction treatment (Si treatment and its combination with drought stress) compared to that of the controlled condition. Drought stress decreased the concentration of auxins (IAA), gibberellins (GA) and cytokinins (CK) in the three mango cultivars leaves, whereas, it increased the concentration of abscisic acid (ABA). On the contrary, IAA, GA, and CK (promoters) endogenous levels were improved by supplementing Si, in contrary ABA was decreased. Drought stress increased the activity of peroxidase (POX), catalase (CAT), and superoxide dismutase (SOD) in the leaves of all mango cultivars grown during three experimental seasons. However, Si supplementation reduced the levels of all these antioxidative enzymes, especially the concentration of SOD when compared to that of control leaves. Fruit quality was improved in three successive seasons when Si was applied. Our results clearly show that the increment in drought tolerance was associated with an increase in antioxidative enzyme activity, allowing mango plants to cope better with drought stress. Si possesses an efficient system for scavenging reactive oxygen species, which protects the plant against destructive oxidative reactions, thereby improving the ability of the mango trees to withstand environmental stress in arid regions.


Assuntos
Desidratação/metabolismo , Mangifera/metabolismo , Silicatos/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Desidratação/patologia , Oxirredutases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Silício/farmacologia
3.
Plant J ; 66(5): 781-95, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21323773

RESUMO

Glycerophosphodiester phosphodiesterase (GDPD), which hydrolyzes glycerophosphodiesters into sn-glycerol-3-phosphate (G-3-P) and the corresponding alcohols, plays an important role in various physiological processes in both prokaryotes and eukaryotes. However, little is known about the physiological significance of GDPD in plants. Here, we characterized the Arabidopsis GDPD family that can be classified into canonical GDPD (AtGDPD1-6) and GDPD-like (AtGDPDL1-7) subfamilies. In vitro analysis of enzymatic activities showed that AtGDPD1 and AtGDPDL1 hydrolyzed glycerolphosphoglycerol, glycerophosphocholine and glycerophosphoethanolamine, but the maximum activity of AtGDPD1 was much higher than that of AtGDPDL1 under our assay conditions. Analyses of gene expression patterns revealed that all AtGDPD genes except for AtGDPD4 were transcriptionally active in flowers and siliques. In addition, the gene family displayed overlapping and yet distinguishable patterns of expression in roots, leaves and stems, indicating functional redundancy as well as specificity of GDPD genes. AtGDPDs but not AtGDPDLs are up-regulated by inorganic phosphate (P(i) ) starvation. Loss-of-function of the plastid-localized AtGDPD1 leads to a significant decrease in GDPD activity, G-3-P content, P(i) content and seedling growth rate only under P(i) starvation compared with the wild type (WT). However, membrane lipid compositions in the P(i) -deprived seedlings remain unaltered between the AtGDPD1 knockout mutant and WT. Thus, we suggest that the GDPD-mediated lipid metabolic pathway may be involved in release of P(i) from phospholipids during P(i) starvation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Homeostase , Fosfatos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Família Multigênica , Mutagênese Insercional , Mutação , Fosfatidiletanolaminas/metabolismo , Diester Fosfórico Hidrolases/genética , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...