Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 54(4): 945-50, 1988 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16347615

RESUMO

The development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was monitored in Leucaena leucocephala grown in an Oxisol subjected to incremental simulated erosion. The density of VAM infective propagules in the soil diminished as the level of simulated erosion (removal of surface soil) was increased from 0 to 50 cm. The level of infection on L. leucocephala roots observed at harvest was not significantly influenced by simulated erosion unless removal of surface soil exceeded 25 cm. Inoculation of this soil and the uneroded soil with Glomus aggregatum enhanced the early onset of infection but did not significantly influence the level of infection observed at the time of harvest. Simulated erosion in excess of 7.5 cm of surface soil removal significantly delayed the development of VAM effectiveness monitored in terms of the P status of L. leucocephala subleaflets and also curtailed the level of maximum effectiveness observed. Decreases in VAM effectiveness were significantly correlated with decreases in soil chemical constituents. However, VAM effectiveness in a soil subjected to 30 cm of surface soil removal was not restored to a significant extent unless the soil was amended with P, even though other nutrients were restored to sufficiency levels. Our results demonstrate that the development of VAM effectiveness is the phase of the VAM symbiosis that is most adversely influenced by simulated erosion and that this effect appears to be caused primarily by insufficient P in the soil solution.

2.
Appl Environ Microbiol ; 44(4): 884-90, 1982 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16346113

RESUMO

This study examines the effect of salinity on the growth and survival of Rhizobium spp. in culture media and soil. Eleven isolates from saline and nonsaline environments were compared. The growth (mean doubling time) of all strains and species tested decreased when the electrical conductivity of the culture medium (yeast extract-mannitol) was raised from 1.2 mS cm to 6.7 mS cm (15% seawater equivalent) or to 13.1 mS cm (28% seawater equivalent). Three of eleven strains failed to grow at 13.1 mS cm. Although growth was affected by salinity, four strains selected from the growth rate study could survive in extremely high concentrations of salt. Two strains with growth rates sensitive to salt and two strains with growth rates relatively unaffected by salt were inoculated into solutions with electrical conductivities of up to 43.0 mS cm (92% seawater equivalent). Not only did all four strains survive the initial osmotic shock (at 5 h after inoculation), but it was not until 27 days after inoculation that the sensitive strains exhibited a significant reduction in viable numbers. The salt-tolerant strains survived for more than 65 days with no reduction in viable counts. The interaction between soil moisture tension and soil salinity in relation to Rhizobium survival in gamma-irradiated soil was also examined. Six treatment combinations were used, ranging from -0.1 bars and 0.2 mS cm to -15 bars and 12 mS cm. Sensitive strains declined from 10 to 10 organisms per g of soil after 84 days of incubation at -15 bars and 12 mS cm. Tolerant strains survived for the same period with no loss in viable numbers. The results of these experiments indicate that many strains of Rhizobium can grow and survive at salt concentrations which are inhibitory to most agricultural legumes. The emphasis of research concerning the effects of salinity on symbiotic nitrogen fixation should, therefore, be directed to aspects of the symbiosis other than the survival of the Rhizobium spp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...