Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pharmacol Res ; 165: 105426, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33453370

RESUMO

Gestational diabetes mellitus (GDM) is a major pregnancy-related disorder with an increasing prevalence worldwide. GDM is associated with altered placental vascular functions and has severe consequences for fetal growth. There is no commonly accepted medication for GDM due to safety considerations. Actions of the currently limited therapeutic options focus exclusively on lowering the blood glucose level without paying attention to the altered placental vascular reactivity and remodelling. We used the fat-sucrose diet/streptozotocin (FSD/STZ) rat model of GDM to explore the efficacy of cinnamaldehyde (Ci; 20 mg/kg/day), a promising antidiabetic agent for GDM, and glyburide/metformin-HCl (Gly/Met; 0.6 + 100 mg/kg/day), as a reference drug for treatment of GDM, on the placenta structure and function at term pregnancy after their oral intake one week before mating onward. Through genome-wide transcriptome, biochemical, metabolome, metal analysis and histopathology we obtained an integrated understanding of their effects. GDM resulted in maternal and fetal hyperglycemia, fetal hyperinsulinemia and placental dysfunction with subsequent fetal anemia, hepatic iron deficiency and high serum erythropoietin level, reflecting fetal hypoxia. Differentially-regulated genes were overrepresented for pathways of angiogenesis, metabolic transporters and oxidative stress. Despite Ci and Gly/Met effectively alleviated the maternal and fetal glycemia, only Ci offered substantial protection from GDM-associated placental vasculopathy and prevented the fetal hypoxia. This was explained by Ci's impact on the molecular regulation of placental angiogenesis, metabolic activity and redox signaling. In conclusion, Ci provides a dual impact for the treatment of GDM at both maternal and fetal levels through its antidiabetic effect and the direct placental vasoprotective action. Lack of Gly/Met effectiveness to restore it's impaired functionality demonstrates the vital role of the placenta in developing efficient medications for GDM.


Assuntos
Acroleína/análogos & derivados , Diabetes Gestacional/tratamento farmacológico , Hipóxia Fetal/prevenção & controle , Neovascularização Patológica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Placenta/efeitos dos fármacos , Acroleína/farmacologia , Acroleína/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Gestacional/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Feminino , Hipóxia Fetal/metabolismo , Neovascularização Patológica/metabolismo , Estresse Oxidativo/fisiologia , Placenta/irrigação sanguínea , Placenta/metabolismo , Gravidez , Ratos , Ratos Wistar
2.
Saudi J Biol Sci ; 18(4): 333-40, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23961145

RESUMO

Sulfated polysaccharides from Ulva lactuca were extracted in hot water and precipitated by ethanol then orally gavaged to rats fed on a hypercholesterolemic diet for 21 days to evaluate the antihypercholesterolemic and antioxidant actions. Atorvastatine Ca (Lipitor) was used as a reference drug. The intragastric administration of U. lactuca extract to hypercholesterolemic rats caused significant decrease of serum total lipids, triglycerides, total cholesterol, LDL-cholesterol and vLDL-cholesterol levels. Whereas, HDL-cholesterol concentration was markedly increased by 180%. Aqueous extract showed a significant ameliorative action on elevated atherogenic index, creatine kinase and lactate dehydrogenase activities of hypercholesterolemic group. Furthermore, serum activities of transaminases and alkaline phosphatase were also improved. High fat diet intake caused a highly significantly elevated serum urea, creatinine concentration. These effects were reversed by oral administration of U. lactuca extract. Sulfates polysaccharides extract of U. lactuca ameliorate hepatic enzymatic (catalase, glutathione peroxidase and superoxide dismutase), non-enzymatic (reduced glutathione & total thiol) antioxidant defenses and thiobarbituric acid reactive substances. In conclusion, the tested U. lactuca polysaccharides extract has potent hypocholesterolemic and antioxidant effects in experimentally-induced hypercholesterolemic animal model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...