Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0265026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35503769

RESUMO

The bioconvection flow of tiny fluid conveying the nanoparticles has been investigated between two concentric cylinders. The contribution of Lorenz force is also focused to inspect the bioconvection thermal transport of tiny particles. The tiny particles are assumed to flow between two concentric cylinders of different radii. The first cylinder remains at rest while flow is induced due to second cylinder which rotates with uniform velocity. Furthermore, the movement of tiny particles follows the principle of thermophoresis and Brownian motion as a part of thermal and mass gradient. Similarly, the gyro-tactic microorganisms swim in the nanofluid as a response to the density gradient and constitute bio-convection. The problem is modeled by using the certain laws. The numerical outcomes are computed by using RKF -45 method. The graphical simulations are performed for flow parameters with specific range like 1≤Re≤5, 1≤Ha≤5, 0.5≤Nt≤2.5, 1≤Nb≤3, 0.2≤Sc≤1.8, 0.2≤Pe≤1.0 and 0.2≤Ω≤1.0. It is observed that the flow velocity decreases with the increase in the Hartmann number that signifies the magnetic field. This outcome indicates that the flow velocity can be controlled externally through the magnetic field. Also, the increase in the Schmidt numbers increases the nanoparticle concentration and the motile density.


Assuntos
Convecção , Nanopartículas , Campos Magnéticos , Movimento (Física)
2.
PLoS One ; 17(4): e0265443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482823

RESUMO

The flow of nanofluid over a variable thickened stretching sheet is studied in this article. Non-Fourier's heat flux and non-Fick's mass flux are incorporated for heat and mass flow analysis. Silver (Ag) and Copper (Cu) are considered nanoparticles with water as base fluid. The resulting equations are transformed into the dimensionless form using similarity transformation and solved by RK-4 with the shooting method. The impact of the governing parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, streamlines, and finally isotherms are incorporated. It is observed that increment in power-law index parameter uplifts the fluid flow, heat, and mass transfer. The increase in the magnitude of skin friction coefficient in (x-direction) with wall thickness parameter is high for nanofluid containing silver nanoparticles as compared to copper nanoparticles.


Assuntos
Temperatura Alta , Nanopartículas Metálicas , Cobre , Modelos Teóricos , Prata
3.
Micromachines (Basel) ; 12(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34832714

RESUMO

Engineers, scientists and mathematicians are greatly concerned about the thermal stability/instability of any physical system. Current contemplation discusses the role of the Soret and Dufour effects in hydro-magnetized Carreau-Yasuda liquid passed over a permeable stretched surface. Several important effects were considered while modelling the thermal transport, including Joule heating, viscous dissipation, and heat generation/absorption. Mass transportation is presented in the presence of a chemical reaction. Different nanoparticle types were mixed in the Carreau-Yasuda liquid in order to study thermal performance. Initially, governing laws were modelled in the form of PDEs. Suitable transformation was engaged for conversion into ODEs and then the resulting ODEs were handled via FEM (Finite Element Method). Grid independent analysis was performed to determine the effectiveness of the chosen methodology. Several important physical effects were explored by augmenting the values of the influential parameters. Heat and mass transfer rates were computed against different parameters and discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...